I have a timeseries dataframe that is similar to:
ts = pd.DataFrame([['Jan 2000','WidgetCo',0.5, 2], ['Jan 2000','GadgetCo',0.3, 3], ['Jan 2000','SnazzyCo',0.2, 4],
['Feb 2000','WidgetCo',0.4, 2], ['Feb 2000','GadgetCo',0.5, 2.5], ['Feb 2000','SnazzyCo',0.1, 4],
], columns=['month','company','share','price'])
Which looks like:
month company share price
0 Jan 2000 WidgetCo 0.5 2.0
1 Jan 2000 GadgetCo 0.3 3.0
2 Jan 2000 SnazzyCo 0.2 4.0
3 Feb 2000 WidgetCo 0.4 2.0
4 Feb 2000 GadgetCo 0.5 2.5
5 Feb 2000 SnazzyCo 0.1 4.0
I can pivot this table like so:
pd.pivot_table(ts,index='month', columns='company')
Which gets me:
share price
company GadgetCo SnazzyCo WidgetCo GadgetCo SnazzyCo WidgetCo
month
Feb 2000 0.5 0.1 0.4 2.5 4 2
Jan 2000 0.3 0.2 0.5 3.0 4 2
This is what I want except that I need to collapse the MultiIndex
so that the company
is used as a prefix for share
and price
like so:
WidgetCo_share WidgetCo_price GadgetCo_share GadgetCo_price ...
month
Jan 2000 0.5 2 0.3 3.0
Feb 2000 0.4 2 0.5 2.5
I came up with this function to do just that but it seems like a poor solution:
def pivot_table_to_flat(df, column, index):
res = df.set_index(index)
cols = res.drop(column, axis=1).columns.values
resulting_cols = []
for prefix in res[column].unique():
for col in cols:
new_col_name = prefix + '_' + col
res[new_col_name] = res[res[column] == prefix][col]
resulting_cols.append(new_col_name)
return res[resulting_cols]
pivot_table_to_flat(ts, index='month', column='company')
What is a better way of accomplishing a pivot resulting in a columns with prefixes as opposed to a MultiIndex
?