(NOTE: If I can get rid of the warning I show below, then I say a bunch of extraneous stuff. As part of asking a question, I also do some opinionating. I guess that's sort of asking the question "Why am I wrong here in what I say?")
It seems that 6 of the symbols used for bool
operators should have been assigned to syntactic type classes, and bool
instantiated for those type classes. In particular, these:
~, &, |, \<not>, \<and>, \<or>.
Because type annotation of terms is a frequent requirement for HOL operators, I don't think it would be a great burden to have to use bool
annotations for those 6 operators.
I would like to overload those 6 symbols for other logical operators. Not having the usual symbols for an application can result in there being no good solution for notation.
In the following example source, if I can get rid of the warnings, then the problem is solved (unless I would be setting a trap for myself):
definition natOP :: "nat => nat => nat" where
"natOP x y = x"
definition natlistOP :: "nat list => nat list => nat list" where
"natlistOP x y = x"
notation
natOP (infixr "&" 35)
notation
natlistOP (infixr "&" 35)
term "True & False"
term "2 & (2::nat)"
term "[2] & [(2::nat)]" (*
OUTPUT: Ambiguous input produces 3 parse trees:
...
Fortunately, only one parse tree is well-formed and type-correct,
but you may still want to disambiguate your grammar or your input.*)
Can I get rid of the warnings? It seems that since there's a type correct term, there shouldn't be a problem.
There are actually other symbols I also want, such as !
, used for list
:
term "[1,2,3] ! 1"
Here's the application for which I want the symbols:
Update
Based on Brian Huffman's answer, I unnotate &
, and switch &
to a syntactic type class. It'll work out, or it won't, indeed, binary logic, so diversely applicable. My general rule is "don't mess with default Isabelle/HOL".
(*|Unnotate; switch to a type class; see someday why this is a bad idea.|*)
no_notation conj (infixr "&" 35)
class conj =
fixes syntactic_type_classes_are_awesome :: "'a => 'a => 'a" (infixr "&" 35)
instantiation bool :: conj
begin
definition syntactic_type_classes_are_awesome_bool :: "bool => bool => bool"
where "p & q == conj p q"
instance ..
end
term "True & False"
value "True & False"
declare[[show_sorts]]
term "p & q" (* "(p::'a::conj) & (q::'a::conj)" :: "'a::conj" *)