The JVM will handle the situation just fine (ie it will not hang or complain), but you may not get a result that you like!
When multiple threads are involved, java becomes fiendishly complicated and even code that looks obviously correct can turn out to be horribly broken. As an example:
public class IntCounter {
private int i;
public IntCounter(int i){
this.i = i;
}
public void incrementInt(){
i++;
}
public int getInt(){
return i;
}
}
is flawed in many ways.
First, let's say that i is currently 0 and thread A and thread B both call incrementInt()
at about the same time. There is a danger that they will both see that i is 0, then both increment it 1 and then save the result. So at the end of the two calls, i is only 1, not 2!
That's the race condition problem with the code, but there are other problems concerning memory visibility. When thread A changes a shared variable, there is no guarantee (without synchronization) that thread B will ever see the changes!
So thread A could increment i 100 times, and an hour later, thread B, calling getInt(), might see i as 0, or 100 or anywhere in between!
The only sane thing to do if you are delving into java concurrency is to read Java Concurrency in Practice by Brian Goetz et al. (OK there's probably other good ways to learn about it, but this is a great book co written by Joshua Bloch, Doug Lea and others)