This is a general misunderstanding of recursive loop definitions. What you are trying to check for is called the "base condition" or "base case". This is easiest to deal with by matching:
display(0, _) ->
ok;
display(In, Rooms) ->
Room = array:get(In, Rooms)
io:format("~w~n", [Room]),
display(In - 1, Rooms).
This is, however, rather unidiomatic. Instead of using a hand-made recursive function, something like a fold or map is more common.
Going a step beyond that, though, most folks would probably have chosen to represent the rooms as a set or list, and iterated over it using list operations. When hand-written the "base case" would be an empty list instead of a 0:
display([]) ->
ok;
display([Room | Rooms]) ->
io:format("~w~n", [Room]),
display(Rooms).
Which would have been avoided in favor, once again, of a list operation like foreach:
display(Rooms) ->
lists:foreach(fun(Room) -> io:format("~w~n", [Room]) end, Rooms).
Some folks really dislike reading lambdas in-line this way. (In this case I find it readable, but the larger they get the more likely the are to become genuinely distracting.) An alternative representation of the exact same function:
display(Rooms) ->
Display = fun(Room) -> io:format("~w~n", [Room]) end,
lists:foreach(Display, Rooms).
Which might itself be passed up in favor of using a list comprehension as a shorthand for iteration:
_ = [io:format("~w~n", [Room]) | Room <- Rooms].
When only trying to get a side effect, though, I really think that lists:foreach/2
is the best choice for semantic reasons.
I think part of the difficulty you are experiencing is that you have chosen to use a rather unusual structure as your base data for your first Erlang program that does anything (arrays are not used very often, and are not very idiomatic in functional languages). Try working with lists a bit first -- its not scary -- and some of the idioms and other code examples and general discussions about list processing and functional programming will make more sense.
Wait! There's more...
I didn't deal with the case where you have an irregular room layout. The assumption was always that everything was laid out in a nice even grid -- which is never the case when you get into the really interesting stuff (either because the map is irregular or because the topology is interesting).
The main difference here is that instead of simply carrying a list of [Room]
where each Room
value is a single value representing the Room's state, you would wrap the state value of the room in a tuple which also contained some extra data about that state such as its location or coordinates, name, etc. (You know, "metadata" -- which is such an overloaded, buzz-laden term today that I hate saying it.)
Let's say we need to maintain coordinates in a three-dimensional space in which the rooms reside, and that each room has a list of occupants. In the case of the array we would have divided the array by the dimensions of the layout. A 10*10*10 space would have an array index from 0 to 999, and each location would be found by an operation similar to
locate({X, Y, Z}) -> (1 * X) + (10 * Y) + (100 * Z).
and the value of each Room
would be [Occupant1, occupant2, ...]
.
It would be a real annoyance to define such an array and then mark arbitrarily large regions of it as "unusable" to give the impression of irregular layout, and then work around that trying to simulate a 3D universe.
Instead we could use a list (or something like a list) to represent the set of rooms, but the Room
value would now be a tuple: Room = {{X, Y, Z}, [Occupants]}
. You may have an additional element (or ten!), like the "name" of the room or some other status information or whatever, but the coordinates are the most certain real identity you're likely to get. To get the room status you would do the same as before, but mark what element you are looking at:
display(Rooms) ->
Display =
fun({ID, Occupants}) ->
io:format("ID ~p: Occupants ~p~n", [ID, Occupants])
end,
lists:foreach(Display, Rooms).
To do anything more interesting than printing sequentially, you could replace the internals of Display
with a function that uses the coordinates to plot the room on a chart, check for empty or full lists of Occupants
(use pattern matching, don't do it procedurally!), or whatever else you might dream up.