Suppose I have a class that has an array of pointers, and I have a method that dereferences a pointer and returns it as a reference. I want to allow the method caller to call non-const methods of the object the pointer is pointing to, but also want to protect myself from the caller changing what the pointer is pointing to. If I return a const reference, I have to mark many of the pointer object's methods as const, and hence many of its class member variables as mutable.
- Is this bad practice? If so, how do I get around this?
- Is there performance penalty for over-using mutable?
Example:
#include <iostream>
#include <array>
#include <memory>
class Counter
{
public:
Counter();
void hit() const;
void reset();
unsigned count() const;
private:
mutable unsigned count_;
};
Counter::Counter() : count_(0) {}
void Counter::hit() const { ++count_; }
void Counter::reset() { count_ = 0; }
unsigned Counter::count() const { return count_; }
class CircularArray
{
public:
CircularArray();
const Counter& next() const;
private:
mutable unsigned i_;
std::array<std::unique_ptr<Counter>, 3> arr_;
};
CircularArray::CircularArray() : i_(2)
{
arr_[0] = std::unique_ptr<Counter>(new Counter);
arr_[1] = std::unique_ptr<Counter>(new Counter);
arr_[2] = std::unique_ptr<Counter>(new Counter);
}
const Counter& CircularArray::next() const { return *arr_[(i_ = (i_ + 1) % 3)]; }
int main()
{
CircularArray circular;
const Counter* p;
p = &circular.next();
p->hit();
p->hit();
Counter c;
//*p = c; // <-- Want to prevent this
}