I want to compute 3D FFT
using Intel MKL
of an array which has about 300×200×200
elements. This 3D array is stored as a 1D array of type double
in a columnwise fashion:
for( int k = 0; k < nk; k++ ) // Loop through the height.
for( int j = 0; j < nj; j++ ) // Loop through the rows.
for( int i = 0; i < ni; i++ ) // Loop through the columns.
{
ijk = i + ni * j + ni * nj * k;
my3Darray[ ijk ] = 1.0;
}
I want to perform not-in-place
FFT on the input array and prevent it from getting modified (I need to use it later in my code) and then do the backward computation in-place
. I also want to have zero padding.
My questions are:
- How can I perform the zero-padding?
- How should I deal with the size of the arrays used by
FFT
functions when zero padding is included in the computation? - How can I take out the zero padded results and get the actual result?
Here is my attempt to the problem, I would be absolutely thankful for any comment, suggestion, or hint.
#include <stdio.h>
#include "mkl.h"
int max(int a, int b, int c)
{
int m = a;
(m < b) && (m = b);
(m < c) && (m = c);
return m;
}
void FFT3D_R2C( // Real to Complex 3D FFT.
double *in, int nRowsIn , int nColsIn , int nHeightsIn ,
double *out )
{
int n = max( nRowsIn , nColsIn , nHeightsIn );
// Round up to the next highest power of 2.
unsigned int N = (unsigned int) n; // compute the next highest power of 2 of 32-bit n.
N--;
N |= N >> 1;
N |= N >> 2;
N |= N >> 4;
N |= N >> 8;
N |= N >> 16;
N++;
/* Strides describe data layout in real and conjugate-even domain. */
MKL_LONG rs[4], cs[4];
// DFTI descriptor.
DFTI_DESCRIPTOR_HANDLE fft_desc = 0;
// Variables needed for out-of-place computations.
MKL_Complex16 *in_fft = new MKL_Complex16 [ N*N*N ];
MKL_Complex16 *out_fft = new MKL_Complex16 [ N*N*N ];
double *out_ZeroPadded = new double [ N*N*N ];
/* Compute strides */
rs[3] = 1; cs[3] = 1;
rs[2] = (N/2+1)*2; cs[2] = (N/2+1);
rs[1] = N*(N/2+1)*2; cs[1] = N*(N/2+1);
rs[0] = 0; cs[0] = 0;
// Create DFTI descriptor.
MKL_LONG sizes[] = { N, N, N };
DftiCreateDescriptor( &fft_desc, DFTI_DOUBLE, DFTI_REAL, 3, sizes );
// Configure DFTI descriptor.
DftiSetValue( fft_desc, DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX );
DftiSetValue( fft_desc, DFTI_PLACEMENT, DFTI_NOT_INPLACE ); // Out-of-place transformation.
DftiSetValue( fft_desc, DFTI_INPUT_STRIDES , rs );
DftiSetValue( fft_desc, DFTI_OUTPUT_STRIDES , cs );
DftiCommitDescriptor( fft_desc );
DftiComputeForward ( fft_desc, in , in_fft );
// Change strides to compute backward transform.
DftiSetValue ( fft_desc, DFTI_INPUT_STRIDES , cs);
DftiSetValue ( fft_desc, DFTI_OUTPUT_STRIDES, rs);
DftiCommitDescriptor( fft_desc );
DftiComputeBackward ( fft_desc, out_fft, out_ZeroPadded );
// Printing the zero padded 3D FFT result.
for( long long i = 0; i < (long long)N*N*N; i++ )
printf("%f\n", out_ZeroPadded[i] );
/* I don't know how to take out the zero padded results and
save the actual result in the variable named "out" */
DftiFreeDescriptor ( &fft_desc );
delete[] in_fft;
delete[] out_ZeroPadded ;
}
int main()
{
int n = 10;
double *a = new double [n*n*n]; // This array is real.
double *afft = new double [n*n*n];
// Fill the array with some 'real' numbers.
for( int i = 0; i < n*n*n; i++ )
a[ i ] = 1.0;
// Calculate FFT.
FFT3D_R2C( a, n, n, n, afft );
printf("FFT results:\n");
for( int i = 0; i < n*n*n; i++ )
printf( "%15.8f\n", afft[i] );
delete[] a;
delete[] afft;
return 0;
}