It has a semantic effect. To simplify, a function marked inline
may be defined multiple times in one program — though all definitions must be equivalent to each other — so presence of inline
is required for correctness when including the function definition in headers (which is, in turn, makes the definition visible so the compiler can inline it without LTO).
Other than that, for inlining-the-optimization, "never" is a perfectly safe approximation. It probably has some effect in some compilers, but nothing worth losing sleep over, especially not without actual hard data. For example, in the following code, using Clang 3.0 or GCC 4.7, main
contains the same code whether work
is marked inline
or not. The only difference is whether work
remains as stand-alone function for other translation units to link to, or is removed.
void work(double *a, double *b) {
if (*b > *a) *a = *b;
}
void maxArray(double* x, double* y) {
for (int i = 0; i < 65536; i++) {
//if (y[i] > x[i]) x[i] = y[i];
work(x+i, y+i);
}
}