As far as showing the iterations graphically, this is the best I can do:
clc
clear all
close
G=zeros(20,10);
X=linspace(2.5,3.5,20)
G(:,1)=X;
for i=1:length(X)
x=X(i)
fx=tanh(x^2-9);
pog=0.0001;
br=1;
while br<10;
xk= x-((tanh(x^2-9))/(2*x*sech(9-x^2)^2));
G(i,br+1)=xk;
x=xk;
br=br+1;
end
end
I=tanh(G(:,end).^2-9)<1e-5;
X(I)
plot(G,1:10)
hold off
axis([2.5 3.5 0 5])
X(I)
is a list of starting values the converge to the root, and the plot shows iteration number on the y-axis, and the guess at that iteration on the x-axis. You can follow each starting value through and see what happens.

Here's another way of visualising Newton's method. It shows the tangent line that is constructed, and where it passes through 0 which gives you the new x
values, from which a vertical line gives you the new function value, which defines a new tangent line for the next iteration. It might help.
clc
clear all
close
G=zeros(20,10);
X=linspace(2.75,3.25,20)
G(:,1)=X;
x2=2:.01:4;f2=@(x) tanh(x.^2-9); %// to help with plotting
for i=1:length(X)
x=X(i)
fx=tanh(x^2-9);
pog=0.0001;
br=1;
xk=x;
while br<10;
%// Newton method step
dx=((tanh(x^2-9))/(2*x*sech(9-x^2)^2));
xk=x-dx;
%// plotting everything
G(i,br+1)=xk;
plot(x2,f2(x2))
hold all
plot(G(i,br:br+1),f2(G(i,br:br+1)),'.','MarkerSize',16)
plot(x2,f2(x)+(x2-x)./(xk-x).*(-f2(x)))
plot(xk,0,'.','MarkerSize',16)
plot(x2,(x2-xk)*(2*xk*sech(9-xk^2)^2)+f2(xk))
plot([xk xk],[-1 1])
plot([2 4],[0 0],'k')
axis([2 4 -1 1])
drawnow
pause
hold off
%// finishing Newton step
x=xk;
br=br+1;
end
hold off
end