Assuming that NAs
would occur in both var
columns,
df[with(df, !ave(!!rowSums(is.na(df[,-1])), ID, FUN=any)),]
# ID var1 var2
#3 2 1 2
#4 2 2 4
Or if it is only specific to var1
df[with(df, !ave(is.na(var1), ID, FUN=any)),]
# ID var1 var2
#3 2 1 2
#4 2 2 4
Or using dplyr
library(dplyr)
df %>%
group_by(ID) %>%
filter(all(!is.na(var1)))
# ID var1 var2
#1 2 1 2
#2 2 2 4
data
df <- structure(list(ID = c(1L, 1L, 2L, 2L), var1 = c(1L, NA, 1L, 2L
), var2 = c(2L, 3L, 2L, 4L)), .Names = c("ID", "var1", "var2"
), class = "data.frame", row.names = c(NA, -4L))