The selected answer is: ArrayList<Integer>(Arrays.asList(1,2,3,5,8,13,21));
However, its important to understand the selected answer internally copies the elements several times before creating the final array, and that there is a way to reduce some of that redundancy.
Lets start by understanding what is going on:
First, the elements are copied into the Arrays.ArrayList<T>
created by the static factory Arrays.asList(T...)
.
This does not the produce the same class as java.lang.ArrayList
despite having the same simple class name. It does not implement methods like remove(int)
despite having a List interface. If you call those methods it will throw an UnspportedMethodException
. But if all you need is a fixed-sized list, you can stop here.
Next the Arrays.ArrayList<T>
constructed in #1 gets passed to the constructor ArrayList<>(Collection<T>)
where the collection.toArray()
method is called to clone it.
public ArrayList(Collection<? extends E> collection) {
......
Object[] a = collection.toArray();
}
Next the constructor decides whether to adopt the cloned array, or copy it again to remove the subclass type. Since Arrays.asList(T...)
internally uses an array of type T, the very same one we passed as the parameter, the constructor always rejects using the clone unless T is a pure Object. (E.g. String, Integer, etc all get copied again, because they extend Object).
if (a.getClass() != Object[].class) {
//Arrays.asList(T...) is always true here
//when T subclasses object
Object[] newArray = new Object[a.length];
System.arraycopy(a, 0, newArray, 0, a.length);
a = newArray;
}
array = a;
size = a.length;
Thus, our data was copied 3x just to explicitly initialize the ArrayList. We could get it down to 2x if we force Arrays.AsList(T...)
to construct an Object[] array, so that ArrayList can later adopt it, which can be done as follows:
(List<Integer>)(List<?>) new ArrayList<>(Arrays.asList((Object) 1, 2 ,3, 4, 5));
Or maybe just adding the elements after creation might still be the most efficient.