Please consider this simple example:
#include <iostream>
const int CALLS_N = 3;
int * hackPointer;
void test()
{
static int callCounter = 0;
int local = callCounter++;
hackPointer = &local;
}
int main()
{
for(int i = 0; i < CALLS_N; i++)
{
test();
std::cout << *hackPointer << "(" << hackPointer << ")";
std::cout << *hackPointer << "(" << hackPointer << ")";
std::cout << std::endl;
}
}
The output (VS2010, MinGW without optimization) has the same structure:
0(X) Y(X)
1(X) Y(X)
2(X) Y(X)
...
[CALLS_N](X) Y(X)
where X - some address in memory, Y - some rubbish number.
What is done here is the case of undefined behaviour. However I want to understand why there is such behaviour in current conditions (and it is rather stable for two compilers).
It seems that after test()
call first read of hackPointer
leads to valid memory, but second successive instant read of it leads to rubbish. Also on any call address of local is the same. I always thought that memory for stack variable is allocated on every function call and is released after return but I can't explain output of the program from this point of view.