Find the segment perpendicular to another one is quite easy.
Say we have points A, B.
Compute vector AB.
Normalize it to compute NAB (== the 'same' vector, but having a length of 1).
Then if a vector has (x,y) as coordinates, its normal vector has (-y,x) as coordinates, so
you can have PNAB easily (PNAB = perpendicular normal vector to AB).
// vector AB
var ABx = B.x - A.x ;
var ABy = B.y - A.y ;
var ABLength = Math.sqrt( ABx*ABx + ABy*ABy );
// normalized vector AB
var NABx = ABx / ABLength;
var NABy = ABy / ABLength;
// Perpendicular + normalized vector.
var PNABx = -NABy ;
var PNABy = NABx ;
last step is to compute D, the point that is at a distance l of A : just add l * PNAB to A :
// compute D = A + l * PNAB
var Dx = A.x + l* PNAB.x;
var Dy = A.y + l *PNAB.y;
Updated JSBIN :
http://jsbin.com/bojozibuvu/1/edit?js,output
Edit :
A second step is to draw the decorations at regular distance, since it's Christmas time, here's how i would do it :
http://jsbin.com/gavebucadu/1/edit?js,console,output
function drawDecoratedSegment(A, B, l, runningLength) {
// vector AB
var ABx = B.x - A.x;
var ABy = B.y - A.y;
var ABLength = Math.sqrt(ABx * ABx + ABy * ABy);
// normalized vector AB
var NABx = ABx / ABLength;
var NABy = ABy / ABLength;
// Perpendicular + normalized vector.
var PNAB = { x: -NABy, y: NABx };
//
var C = { x: 0, y: 0 };
var D = { x: 0, y: 0 };
//
drawSegment(A, B);
// end length of drawn segment
var endLength = runningLength + ABLength;
// while we can draw a decoration on this line
while (lastDecorationPos + decorationSpacing < endLength) {
// compute relative position of decoration.
var decRelPos = (lastDecorationPos + decorationSpacing) - runningLength;
// compute C, the start point of decoration
C.x = A.x + decRelPos * NABx;
C.y = A.y + decRelPos * NABy;
// compute D, the end point of decoration
D.x = C.x + l * PNAB.x;
D.y = C.y + l * PNAB.y;
// draw
drawSegment(C, D);
// iterate
lastDecorationPos += decorationSpacing;
}
return ABLength;
}