I'm currently reading Implementing functional languages: a tutorial by SPJ and the (sub)chapter I'll be referring to in this question is 3.8.7 (page 136).
The first remark there is that a reader following the tutorial has not yet implemented C scheme compilation (that is, of expressions appearing in non-strict contexts) of ECase expressions.
The solution proposed is to transform a Core program so that ECase expressions simply never appear in non-strict contexts. Specifically, each such occurrence creates a new supercombinator with exactly one variable which body corresponds to the original ECase expression, and the occurrence itself is replaced with a call to that supercombinator.
Below I present a (slightly modified) example of such transformation from 1
t a b = Pack{2,1} ;
f x = Pack{2,2} (case t x 7 6 of
<1> -> 1;
<2> -> 2) Pack{1,0} ;
main = f 3
== transformed into ==>
t a b = Pack{2,1} ;
f x = Pack{2,2} ($Case1 (t x 7 6)) Pack{1,0} ;
$Case1 x = case x of
<1> -> 1;
<2> -> 2 ;
main = f 3
I implemented this solution and it works like charm, that is, the output is Pack{2,2} 2 Pack{1,0}
.
However, what I don't understand is - why all that trouble? I hope it's not just me, but the first thought I had of solving the problem was to just implement compilation of ECase expressions in C scheme. And I did it by mimicking the rule for compilation in E scheme (page 134 in 1 but I present that rule here for completeness): so I used
E[[case e of alts]] p = E[[e]] p ++ [Casejump D[[alts]] p]
and wrote
C[[case e of alts]] p = C[[e]] p ++ [Eval] ++ [Casejump D[[alts]] p]
I added [Eval]
because Casejump
needs an argument on top of the stack in weak head normal form (WHNF) and C scheme doesn't guarantee that, as opposed to E scheme.
But then the output changes to enigmatic: Pack{2,2} 2 6
.
The same applies when I use the same rule as for E scheme, i.e.
C[[case e of alts]] p = E[[e]] p ++ [Casejump D[[alts]] p]
So I guess that my "obvious" solution is inherently wrong - and I can see that from outputs. But I'm having trouble stating formal arguments as to why that approach was bound to fail.
Can someone provide me with such argument/proof or some intuition as to why the naive approach doesn't work?