Try
dat1 <- dat #to keep a copy of the original dataset
indx <- sapply(dat, is.numeric)#check which columns are numeric
nm1 <- which(indx)#get the numeric index of the column
indx2 <- duplicated(names(nm1))#check which among the
# integer columns are duplicated
#use `Map` after splitting the "nm1" with its "names", do the `rowSums`
dat[ nm1[!indx2]] <- Map(function(x,y) rowSums(x[y]), list(dat),
split(nm1, names(nm1)))
dat[ -nm1[indx2]]
Update
Or to make it more efficient, only take the "duplicated" and "numeric" columns while leaving the others intact. Create an "index" (indx2
) of columns that are duplicated. Subset the "nm1" based on the "indx2" and then do rowSums
as described above. Finally, remove the unwanted columns (duplicated ones) by using the "indx3"
indx2 <- duplicated(names(nm1))|duplicated(names(nm1),fromLast=TRUE)
nm2 <- nm1[indx2]
indx3 <- duplicated(names(nm2))
dat[nm2[!indx3]] <- Map(function(x,y) rowSums(x[y]),
list(dat),split(nm2, names(nm2)))
datN <- dat[ -nm2[indx3]]
datN
# col1 col2 col3 col4 col5
#1 16 23 2 10 10
#2 10 18 12 8 18
#3 21 23 15 6 10
#4 14 37 3 5 15
#5 29 39 5 1 11
#6 26 31 14 2 20
#7 25 31 2 8 10
#8 36 31 12 8 6
#9 32 26 13 6 4
#10 16 38 1 7 3
Checking the results
rowSums(dat1[names(dat1) %in% 'col1'])
#[1] 16 10 21 14 29 26 25 36 32 16
rowSums(dat1[names(dat1) %in% 'col2'])
#[1] 23 18 23 37 39 31 31 31 26 38
data
dat <- structure(list(col1 = c(6L, 5L, 15L, 11L, 14L, 19L, 6L, 16L,
17L, 6L), col2 = c(13L, 8L, 14L, 14L, 7L, 19L, 4L, 1L, 11L, 3L
), col3 = structure(c(2L, 5L, 8L, 3L, 4L, 7L, 2L, 5L, 6L, 1L), .Label = c("1",
"2", "3", "5", "12", "13", "14", "15"), class = "factor"), col2 = c(7L,
5L, 8L, 3L, 19L, 5L, 15L, 13L, 14L, 20L), col4 = structure(c(7L,
6L, 4L, 3L, 1L, 2L, 6L, 6L, 4L, 5L), .Label = c("1", "2", "5",
"6", "7", "8", "10"), class = "factor"), col5 = c(10L, 18L, 10L,
15L, 11L, 20L, 10L, 6L, 4L, 3L), col1 = c(10L, 5L, 6L, 3L, 15L,
7L, 19L, 20L, 15L, 10L), col2 = c(3L, 5L, 1L, 20L, 13L, 7L, 12L,
17L, 1L, 15L)), .Names = c("col1", "col2", "col3", "col2", "col4",
"col5", "col1", "col2"), row.names = c(NA, -10L), class = "data.frame")