As you probably noticed from each of the answers, you generally have to "resort to a program".
However, without using any external executables, in Bash and ksh:
string=''; for i in {0..31}; do string+=$(printf "%x" $(($RANDOM%16)) ); done; echo $string
in zsh:
string=''; for i in {0..31}; do string+=$(printf "%x" $(($RANDOM%16)) ); dummy=$RANDOM; done; echo $string
Change the lower case x
in the format string to an upper case X
to make the alphabetic hex characters upper case.
Here's another way to do it in Bash but without an explicit loop:
printf -v string '%X' $(printf '%.2s ' $((RANDOM%16))' '{00..31})
In the following, "first" and "second" printf
refers to the order in which they're executed rather than the order in which they appear in the line.
This technique uses brace expansion to produce a list of 32 random numbers mod 16 each followed by a space and one of the numbers in the range in braces followed by another space (e.g. 11 00
). For each element of that list, the first printf
strips off all but the first two characters using its format string (%.2
) leaving either single digits followed by a space each or two digits. The space in the format string ensures that there is then at least one space between each output number.
The command substitution containing the first printf
is not quoted so that word splitting is performed and each number goes to the second printf
as a separate argument. There, the numbers are converted to hex by the %X
format string and they are appended to each other without spaces (since there aren't any in the format string) and the result is stored in the variable named string
.
When printf
receives more arguments than its format string accounts for, the format is applied to each argument in turn until they are all consumed. If there are fewer arguments, the unmatched format string (portion) is ignored, but that doesn't apply in this case.
I tested it in Bash 3.2, 4.4 and 5.0-alpha. But it doesn't work in zsh (5.2) or ksh (93u+) because RANDOM
only gets evaluated once in the brace expansion in those shells.
Note that because of using the mod operator on a value that ranges from 0 to 32767 the distribution of digits using the snippets could be skewed (not to mention the fact that the numbers are pseudo random in the first place). However, since we're using mod 16 and 32768 is divisible by 16, that won't be a problem here.
In any case, the correct way to do this is using mktemp
as in Oleg Razgulyaev's answer.