I would like to know if training a feed forward neural network with Genetic Algorithms, Particle Swarm Optimization and Simulated Annealing before using resilient propagation training does improve the result.
Here is the code I am using:
CalculateScore score = new TrainingSetScore(trainingSet);
StopTrainingStrategy stop = new StopTrainingStrategy();
StopTrainingStrategy stopGA = new StopTrainingStrategy();
StopTrainingStrategy stopSIM = new StopTrainingStrategy();
StopTrainingStrategy stopPSO = new StopTrainingStrategy();
Randomizer randomizer = new NguyenWidrowRandomizer();
//Backpropagation train = new Backpropagation((BasicNetwork) network, trainingSet, 0.2, 0.1);
// LevenbergMarquardtTraining train = new LevenbergMarquardtTraining((BasicNetwork) network, trainingSet);
int population = 500;
MLTrain trainGA = new MLMethodGeneticAlgorithm(new MethodFactory(){
@Override
public MLMethod factor() {
final BasicNetwork result = createNetwork();
((MLResettable)result).reset();
return result;
}}, score,population);
Date dStart = new Date();
int epochGA = 0;
trainGA.addStrategy(stopGA);
do{
trainGA.iteration();
if(writeOnStdOut)
System.out.println("Epoch Genetic #" + epochGA + " Error:" + trainGA.getError());
epochGA++;//0000001
previousError = trainGA.getError();
Date dtemp = new Date();
totsecs = ((double)(dtemp.getTime()-dStart.getTime())/1000);
} while(previousError > maximumAcceptedErrorTreshold && epochGA < (maxIterations/5) && !stopGA.shouldStop() && totsecs < (secs/3));
NeuralPSO trainPSO = new NeuralPSO((BasicNetwork) network, randomizer, score, 100);
int epochPSO = 0;
trainPSO.addStrategy(stopPSO);
dStart = new Date();
do{
trainPSO.iteration();
if(writeOnStdOut)
System.out.println("Epoch Particle Swarm #" + epochPSO + " Error:" + trainPSO.getError());
epochPSO++;//0000001
previousError = trainPSO.getError();
Date dtemp = new Date();
totsecs = ((double)(dtemp.getTime()-dStart.getTime())/1000);
} while(previousError > maximumAcceptedErrorTreshold && epochPSO < (maxIterations/5) && !stopPSO.shouldStop() && totsecs < (secs/3));
MLTrain trainSIM = new NeuralSimulatedAnnealing((MLEncodable) network, score, startTemperature, stopTemperature, cycles);
int epochSA = 0;
trainSIM.addStrategy(stopSIM);
dStart = new Date();
do{
trainSIM.iteration();
if(writeOnStdOut)
System.out.println("Epoch Simulated Annealing #" + epochSA + " Error:" + trainSIM.getError());
epochSA++;//0000001
previousError = trainSIM.getError();
Date dtemp = new Date();
totsecs = ((double)(dtemp.getTime()-dStart.getTime())/1000);
} while(previousError > maximumAcceptedErrorTreshold && epochSA < (maxIterations/5) && !stopSIM.shouldStop() && totsecs < (secs/3));
previousError = 0;
BasicTraining train = getTraining(method,(BasicNetwork) network, trainingSet);
//train.addStrategy(new Greedy());
//trainAlt.addStrategy(new Greedy());
HybridStrategy strAnneal = new HybridStrategy(trainSIM);
train.addStrategy(strAnneal);
//train.addStrategy(strGenetic);
//train.addStrategy(strPSO);
train.addStrategy(stop);
//
// Backpropagation train = new Backpropagation((ContainsFlat) network, trainingSet, 0.7, 0.3);
dStart = new Date();
int epoch = 1;
do {
train.iteration();
if(writeOnStdOut)
System.out.println("Epoch #" + epoch + " Error:" + train.getError());
epoch++;//0000001
if(Math.abs(train.getError()-previousError)<0.0000001) iterationWithoutImprovement++; else iterationWithoutImprovement = 0;
previousError = train.getError();
Date dtemp = new Date();
totsecs = ((double)(dtemp.getTime()-dStart.getTime())/1000);
} while(previousError > maximumAcceptedErrorTreshold && epoch < maxIterations && !stop.shouldStop() && totsecs < secs);//&& iterationWithoutImprovement < maxiter);
As you can see is a sequence of training algorithms that should improve the overall training.
Please let me know if it makes sense and if the code is correct. It seems to be working but I want to be sure because sometimes I see that the progress made by GA are reset from PSO.
Thanks