I have been seriously trying to create a genetic program that will evolve to play tic-tac-toe in an acceptable way. I'm using the genome to generate a function that will then take the board as input and output the result... But it's not working.
Can this program be written in less than 500 lines of code (including blank lines and documentation)? Perhaps my problem is that I'm generating AIs that are too simple.
My research
- A Genetic Algorithm for Tic-Tac-Toe (very different from my approach).
- http://www.tropicalcoder.com/GeneticAlgorithm.htm (too abstract).
- In quite a good number of websites there are references to 'neural networks'. Are they really required?
Important disclaimers
- This is NOT homework of any kind, just a personal project for the sake of learning something cool.
- This is NOT a 'give me the codz plz', I am looking for high level suggestions. I explicitly don't want ready-made solutions as the answers.
Please give me some help and insight into this 'genetic programming' concept applied to this specific simple problem.
@OnABauer: I think that I am using genetic programming because quoting Wikipedia
In artificial intelligence, genetic programming (GP) is an evolutionary algorithm-based methodology inspired by biological evolution to find computer programs that perform a user-defined task.
And I am trying to generate a program (in this case function) that will perform the task of playing tic-tac-toe, you can see it because the output of the most important genetic_process
function is a genome that will then be converted to a function, thus if I understood correctly this is genetic programming because the output is a function.
Program introspection and possible bugs/problems
The code runs with no errors nor crashes. The problem is that in the end what I get is an incompetent AI, that will attempt to make illegal move and be punished with losing each and every time. It is no better than random.
Possibly it is because my AI function is so simple: just making calculations on the stored values of the squares with no conditionals.
High level description
- What is your chromosome meant to represent?
My cromosome rapresents a list of functions that will then be used to reduce over the array of the board stored as trinary. OK let me make an example:
* Cromosome is: amMMMdsa (length of cromosome must be 8).
1. The first step is converting this to functions following the lookup at the top called LETTERS_TO_FUNCTIONS
, this give the functions: [op.add,op.mul,op.mod,op.mod,op.mod,op.floordiv,op.sub,op.add]
The second step is converting the board to a trinary rapresentation. So let's say the board is
"OX XOX "
we will get [2, 3, 1, 1, 3, 2, 3, 1, 1]The third step is reducing the trinary raprentation using the functions obtained above. That is best explained by the function down below:
def reduce_by_all_functions(numbers_list,functions_list): """ Applies all the functions in a list to a list of numbers. >>> reduce_by_all_functions([3,4,6],[op.add,op.sub]) 1 >>> reduce_by_all_functions([6,2,4],[op.mul,op.floordiv]) 3 """ if len(functions_list) != len(numbers_list) - 1: raise ValueError("The functions must be exactly one less than the numbers") result = numbers_list[0] for index,n in enumerate(numbers_list[1:]): result = functions_list[index](result,n) return result
Thus yielding the result of:
0
that means that the ai decided to go in the first square- What is your fitness function?
Luckly this is easy to answer.
def ai_fitness(genome,accuracy):
"""
Returns how good an ai is by letting it play against a random ai many times.
The higher the value, the best the ai
"""
ai = from_genome_to_ai(genome)
return decide_best_ai(ai,random_ai,accuracy)
- How does your mutation work?
The son ereditates 80% of the genes from the father and 20% of genes from the mother. There is no kind of random mutation besides that.
And how is that reduce_by_all_functions() being used? I see that it takes a board and a chromosome and returns a number. How is that number used, what is it meant to represent, and... why is it being returned modulo 9?
reduce_by_all_functions()
is used to actually apply the functions previously obtained by the cromosome. The number is the square the ai wants to take. It is modulo 9 because it must be between 0 and 8 because the board is 9 spaces.
My code so far:
import doctest
import random
import operator as op
SPACE = ' '
MARK_OF_PLAYER_1 = "X"
MARK_OF_PLAYER_2 = "O"
EMPTY_MARK = SPACE
BOARD_NUMBERS = """
The moves are numbered as follows:
0 | 1 | 2
---------
3 | 4 | 5
---------
6 | 7 | 8
"""
WINNING_TRIPLETS = [ (0,1,2), (3,4,5), (6,7,8),
(0,3,6), (1,4,7), (2,5,8),
(0,4,8), (2,4,6) ]
LETTERS_TO_FUNCTIONS = {
'a': op.add,
'm': op.mul,
'M': op.mod,
's': op.sub,
'd': op.floordiv
}
def encode_board_as_trinary(board):
"""
Given a board, replaces the symbols with the numbers
1,2,3 in order to make further processing easier.
>>> encode_board_as_trinary("OX XOX ")
[2, 3, 1, 1, 3, 2, 3, 1, 1]
>>> encode_board_as_trinary(" OOOXXX")
[1, 1, 1, 2, 2, 2, 3, 3, 3]
"""
board = ''.join(board)
board = board.replace(MARK_OF_PLAYER_1,'3')
board = board.replace(MARK_OF_PLAYER_2,'2')
board = board.replace(EMPTY_MARK,'1')
return list((int(square) for square in board))
def create_random_genome(length):
"""
Creates a random genome (that is a sequences of genes, from which
the ai will be generated. It consists of randoom letters taken
from the keys of LETTERS_TO_FUNCTIONS
>>> random.seed("EXAMPLE")
# Test is not possible because even with the same
# seed it gives different results each run...
"""
letters = [letter for letter in LETTERS_TO_FUNCTIONS]
return [random.choice(letters) for _ in range(length)]
def reduce_by_all_functions(numbers_list,functions_list):
"""
Applies all the functions in a list to a list of numbers.
>>> reduce_by_all_functions([3,4,6],[op.add,op.sub])
1
>>> reduce_by_all_functions([6,2,4],[op.mul,op.floordiv])
3
"""
if len(functions_list) != len(numbers_list) - 1:
raise ValueError("The functions must be exactly one less than the numbers")
result = numbers_list[0]
for index,n in enumerate(numbers_list[1:]):
result = functions_list[index](result,n)
return result
def from_genome_to_ai(genome):
"""
Creates an AI following the rules written in the genome (the same as DNA does).
Each letter corresponds to a function as written in LETTERS_TO_FUNCTIONS.
The resulting ai will reduce the board using the functions obtained.
>>> ai = from_genome_to_ai("amMaMMss")
>>> ai("XOX OXO")
4
"""
functions = [LETTERS_TO_FUNCTIONS[gene] for gene in genome]
def ai(board):
return reduce_by_all_functions(encode_board_as_trinary(board),functions) % 9
return ai
def take_first_empty_ai(board):
"""
Very simple example ai for tic-tac-toe
that takes the first empty square.
>>> take_first_empty_ai(' OX O XXO')
0
>>> take_first_empty_ai('XOX O XXO')
3
"""
return board.index(SPACE)
def get_legal_moves(board):
"""
Given a tic-tac-toe board returns the indexes of all
the squares in which it is possible to play, i.e.
the empty squares.
>>> list(get_legal_moves('XOX O XXO'))
[3, 5]
>>> list(get_legal_moves('X O XXO'))
[1, 2, 3, 5]
"""
for index,square in enumerate(board):
if square == SPACE:
yield index
def random_ai(board):
"""
The simplest possible tic-tac-toe 'ai', just
randomly choses a random move.
>>> random.seed("EXAMPLE")
>>> random_ai('X O XXO')
3
"""
legal_moves = list(get_legal_moves(board))
return random.choice(legal_moves)
def printable_board(board):
"""
User Interface function:
returns an easy to understand representation
of the board.
"""
return """
{} | {} | {}
---------
{} | {} | {}
---------
{} | {} | {}""".format(*board)
def human_interface(board):
"""
Allows the user to play tic-tac-toe.
Shows him the board, the board numbers and then asks
him to select a move.
"""
print("The board is:")
print(printable_board(board))
print(BOARD_NUMBERS)
return(int(input("Your move is: ")))
def end_result(board):
"""
Evaluates a board returning:
0.5 if it is a tie
1 if MARK_OF_PLAYER_1 won # default to 'X'
0 if MARK_OF_PLAYER_2 won # default to 'O'
else if nothing of the above applies return None
>>> end_result('XXX OXO')
1
>>> end_result(' O X X O')
None
>>> end_result('OXOXXOXOO')
0.5
"""
if SPACE not in board:
return 0.5
for triplet in WINNING_TRIPLETS:
if all(board[square] == 'X' for square in triplet):
return 1
elif all(board[square] == 'O' for square in triplet):
return 0
def game_ended(board):
"""
Small syntactic sugar function to if the game is ended
i.e. no tie nor win occured
"""
return end_result(board) is not None
def play_ai_tic_tac_toe(ai_1,ai_2):
"""
Plays a game between two different ai-s, returning the result.
It should be noted that this function can be used also to let the user
play against an ai, just call it like: play_ai_tic_tac_toe(random_ai,human_interface)
>>> play_ai_tic_tac_toe(take_first_empty_ai,take_first_empty_ai)
1
"""
board = [SPACE for _ in range(9)]
PLAYER_1_WIN = 1
PLAYER_1_LOSS = 0
while True:
for ai,check in ( (ai_1,MARK_OF_PLAYER_1), (ai_2,MARK_OF_PLAYER_2) ):
move = ai(board)
# If move is invalid you lose
if board[move] != EMPTY_MARK:
if check == MARK_OF_PLAYER_1:
return PLAYER_1_LOSS
else:
return PLAYER_1_WIN
board[move] = check
if game_ended(board):
return end_result(board)
def loop_play_ai_tic_tac_toe(ai_1,ai_2,games_number):
"""
Plays games number games between ai_1 and ai_2
"""
return sum(( play_ai_tic_tac_toe(ai_1,ai_2)) for _ in range(games_number))
def decide_best_ai(ai_1,ai_2,accuracy):
"""
Returns the number of times the first ai is better than the second:
ex. if the ouput is 1.4, the first ai is 1.4 times better than the second.
>>> decide_best_ai(take_first_empty_ai,random_ai,100) > 0.80
True
"""
return sum((loop_play_ai_tic_tac_toe(ai_1,ai_2,accuracy//2),
loop_play_ai_tic_tac_toe(ai_2,ai_1,accuracy//2))) / (accuracy // 2)
def ai_fitness(genome,accuracy):
"""
Returns how good an ai is by lettting it play against a random ai many times.
The higher the value, the best the ai
"""
ai = from_genome_to_ai(genome)
return decide_best_ai(ai,random_ai,accuracy)
def sort_by_fitness(genomes,accuracy):
"""
Syntactic sugar for sorting a list of genomes based on the fitness.
High accuracy will yield a more accurate ordering but at the cost of more
computation time.
"""
def fit(genome):
return ai_fitness(genome,accuracy)
return list(sorted(genomes, key=fit, reverse=True))
# probable bug-fix because high fitness means better individual
def make_child(a,b):
"""
Returns a mix of cromosome a and cromosome b.
There is a bias towards cromosome a because I think that
a too weird soon is going to be bad.
"""
result = []
for index,char_a in enumerate(a):
char_b = b[index]
if random.random() > 0.8:
result.append(char_a)
else:
result.append(char_b)
return result
def genetic_process(population_size,generation_number,accuracy,elite_number):
"""
A full genetic process yielding a good tic-tac-toe ai. # not yet
@ Parameters:
@ population_size: the number of ai-s that you allow to be alive
at once
@ generation_number: the number of generations of the gentetic
@ accuracy: how well the ai-s are ordered,
low accuracy means that a good ai may be considered bad or
viceversa. High accuarcy is computationally costly
@ elite_number: the number of best programmes that get to reproduce
at each generation.
@ Return:
@ A genome for a tic-tac-toe ai
"""
pool = [create_random_genome(9-1) for _ in range(population_size)]
for generation in range(generation_number):
best_individuals = sort_by_fitness(pool,accuracy)[:elite_number]
the_best = best_individuals[0]
for good_individual in best_individuals:
pool.append(make_child(the_best,good_individual))
pool = sort_by_fitness(pool,accuracy)[:population_size]
return the_best
def _test():
"""
Tests all the script by running the
>>> 2 + 2 # code formatted like this
4
"""
doctest.testmod()
def main():
"""
A simple demo to let the user play against a genetic opponent.
"""
print("The genetic ai is being created... please wait.")
genetic_ai = from_genome_to_ai(genetic_process(50,4,40,25))
play_ai_tic_tac_toe(genetic_ai,human_interface)
if __name__ == '__main__':
main()