So I have an image and I have a pixel mask for that image, where the mask is the same size as the image and contains values of 0 and 1, where if it is 0 I don't want to modify the image, and if it is 1 I want to add a transparent color over that pixel of the image.
Basically I want to highlight certain segments of the image but still see what is underneath.
Now I have searched high and low but haven't found a simple way to do this. I used np.where with the mask to get the pixel locations of the 1's to use with the plot functions. I first tried scatter plots with a small marker size and no edge color (small scatter plot markers in matplotlib are always black), but the markers are not one image pixel in size, they seem to be an absolute size and so depending on the size of the figure the transparency is affected and weird patterns are created from the overlapping markers.
Just the regular pyplot plot function created the exact look I desired (where the coloring was smooth and invariant to figure size) but it also colored horizontal connections between disjoint segments in the mask (since it is drawing lines I guess), so I couldn't use that.
What worked the best was patches, which I came across in this question: (How to set a fixed/static size of circle marker on a scatter plot?). I found that rectangular patches with width and height of 1 gave me the exact desired effect, where I could put a transparent color over certain pixels of the image. However this proved to produce a ton (tens of thousands) of rectangles for certain images, and so it was quite slow. Even when using a PatchCollection instead of calling addPatch every time it was still slow.
Now I can probably just join adjacent rectangles to reduce the number of things needing to be drawn, but I was just wondering if there was an easier way to do this?
Thanks.