First you need to sort the vector. Use std::sort for that.
std::lower_bound finds the first element that is greater or equal with a given element. (the elements have to be at least partially ordered)
From there you iterate while you have consecutive elements.
Dealing with duplicates: One way is the way I went: consider consecutive and equal elements when iterating. Another approach is to add a prerequisite that the vector / range contains unique elements. I chose the former because it avoids erasing elements.
Here is how you eliminate duplicates from a sorted vector:
v.erase(std::unique(v.begin(), v.end()), v.end());
My implementation:
// finds the first missing element in the vector v
// prerequisite: v must be sorted
auto firstMissing(std::vector<int> const &v, int elem) -> int {
auto low = std::lower_bound(std::begin(v), std::end(v), elem);
if (low == std::end(v) || *low != elem) {
return elem;
}
while (low + 1 != std::end(v) &&
(*low == *(low + 1) || *low + 1 == *(low + 1))) {
++low;
}
return *low + 1;
}
And a generalized version:
// finds the first missing element in the range [first, last)
// prerequisite: the range must be sorted
template <class It, class T = decltype(*std::declval<It>())>
auto firstMissing(It first, It last, T elem) -> T {
auto low = std::lower_bound(first, last, elem);
if (low == last || *low != elem) {
return elem;
}
while (std::next(low) != last &&
(*low == *std::next(low) || *low + 1 == *std::next(low))) {
std::advance(low, 1);
}
return *low + 1;
}
Test case:
int main() {
auto v = std::vector<int>{13, 8, 3, 6, 10, 1, 7, 7, 7, 0};
std::sort(v.begin(), v.end());
for (auto n : {-2, 0, 5, 6, 20}) {
cout << n << ": " << firstMissing(v, n) << endl;
}
return 0;
}
Result:
-2: -2
0: 2
5: 5
6: 9
20: 20
A note about sorting: From the OP's comments he was searching for a solution that wouldn't modify the vector.
You have to sort the vector for an efficient solution. If modifying the vector is not an option you could create a copy and work on it.
If you are hell-bent on not sorting, there is a brute force solution (very very inefficient - O(n^2)):
auto max = std::max_element(std::begin(v), std::end(v));
if (elem > *max) {
return elem;
}
auto i = elem;
while (std::find(std::begin(v), std::end(v), i) != std::end(v)) {
++i;
}
return i;