In the question "Efficiently create a density plot for high-density regions, points for sparse regions" there is asked to replace the low density regions with NaNs. The relevant code in the accepted answer is the following:
hh, locx, locy = scipy.histogram2d(xdat, ydat, range=xyrange, bins=bins)
posx = np.digitize(xdat, locx)
posy = np.digitize(ydat, locy)
#select points within the histogram
ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
hhsub = hh[posx[ind] - 1, posy[ind] - 1] # values of the histogram where the points are
xdat1 = xdat[ind][hhsub < thresh] # low density points
ydat1 = ydat[ind][hhsub < thresh]
hh[hh < thresh] = np.nan # fill the areas with low density by NaNs
I found that something like
hh = np.where(hh > thresh, hh, np.nan)
is also working. What are the differences, both in performing as results?