I'm completely new to numpy and unable to find a solution. I have a 2d list of floating point numbers in python like:
list1[0..8][0..2]
Where e.g.:
print(list1[0][0])
> 0.1122233784
Now I want to find min and max values:
b1 = numpy.array(list1)
list1MinX, list1MinY, list1MinZ = b1.min(axis=0)
list1MaxX, list1MaxY, list1MaxZ = b1.max(axis=0)
I need to do this about a million times in a loop.
It works correctly, but it's about 3x slower than my previous native python approach.
(1:15 min[numpy] vs 0:25 min[native])
What am I doing wrong? I've read that the list conversion could be the problem, but I don't know how to do it better.
EDIT
As request some non-pseudo code, although in my script the list is created in another way.
import numpy
import random
def moonPositionNow():
#assume we read like from a file, line by line
#nextChunk = readNextLine()
#the file is build like this
#x-coord
#y-coord
#z-coord
#x-coord
#...
#but we don't have that data here, so as a **placeholder** we return a random number
nextChunk = random.random()
return nextChunk
for w in range(1000000):
list1 = [[moonPositionNow() for i in range(3)] for j in range(9)]
b1 = numpy.array(list1)
list1MinX, list1MinY, list1MinZ = b1.min(axis=0)
list1MaxX, list1MaxY, list1MaxZ = b1.max(axis=0)
#Print out results
Although the list creation may be a bottle neck here I guaranty in the original code it's not the problem.
EDIT2:
Updated the example code to clarify, I don't need a numpy array of random numbers.