FROM HERE
Given a value N, if we want to make change for N cents, and we have infinite supply of each of S = { S1, S2, .. , Sm} valued coins, how many ways can we make the change? The order of coins doesn’t matter.
For example, for N = 4 and S = {1,2,3}, there are four solutions: {1,1,1,1},{1,1,2},{2,2},{1,3}. So output should be 4. For N = 10 and S = {2, 5, 3, 6}, there are five solutions: {2,2,2,2,2}, {2,2,3,3}, {2,2,6}, {2,3,5} and {5,5}. So the output should be 5.
Recursive solution. (Can someone please help me understand how to calculate time complexity of this solution)
How to solve T(M,N) = T(M,N-1) + T(M-1,N)
int count( int S[], int m, int n )
{
if (n == 0)
return 1;
if (n < 0)
return 0;
if (m <=0 && n >= 1)
return 0;
return count( S, m - 1, n ) + count( S, m, n-S[m-1] );
}
int main()
{
int i, j;
int arr[] = {1, 2, 3};
int m = sizeof(arr)/sizeof(arr[0]);
printf("%d ", count(arr, m, 4));
getchar(); return 0;
}