I'm just starting with CUDA and this is my very first project. I've done a search for this issue and while I've noticed other people have had similar problems, none of the suggestions seemed relevant to my specific issue or have helped in my case.
As an exercise, I'm trying to write an n-body simulation using CUDA. At this stage I'm not interested whether my specific implementation is efficient or not, I'm just looking for something that works and I can refine it later. I'll also need to update the code later, once it's working, to work on my SLI configuration.
Here's a brief outline of the process:
- Create X and Y position, velocity, acceleration vectors.
- Create same vectors on GPU and copy values across
- In a loop: (i) calculate acceleration for the iteration, (ii) apply acceleration to velocities and positions, and (iii) copy positions back to host for display.
(Display not implemented yet. I'll do this later)
Don't worry about the acceleration calculation function for now, here is the update function:
__global__ void apply_acc(double* pos_x, double* pos_y, double* vel_x, double* vel_y, double* acc_x, double* acc_y, int N)
{
int i = threadIdx.x;
if (i < N);
{
vel_x[i] += acc_x[i];
vel_y[i] += acc_y[i];
pos_x[i] += vel_x[i];
pos_y[i] += vel_y[i];
}
}
And here's some of the code in the main method:
cudaError t;
t = cudaMalloc(&d_pos_x, N * sizeof(double));
t = cudaMalloc(&d_pos_y, N * sizeof(double));
t = cudaMalloc(&d_vel_x, N * sizeof(double));
t = cudaMalloc(&d_vel_y, N * sizeof(double));
t = cudaMalloc(&d_acc_x, N * sizeof(double));
t = cudaMalloc(&d_acc_y, N * sizeof(double));
t = cudaMemcpy(d_pos_x, pos_x, N * sizeof(double), cudaMemcpyHostToDevice);
t = cudaMemcpy(d_pos_y, pos_y, N * sizeof(double), cudaMemcpyHostToDevice);
t = cudaMemcpy(d_vel_x, vel_x, N * sizeof(double), cudaMemcpyHostToDevice);
t = cudaMemcpy(d_vel_y, vel_y, N * sizeof(double), cudaMemcpyHostToDevice);
t = cudaMemcpy(d_acc_x, acc_x, N * sizeof(double), cudaMemcpyHostToDevice);
t = cudaMemcpy(d_acc_y, acc_y, N * sizeof(double), cudaMemcpyHostToDevice);
while (true)
{
calc_acc<<<1, N>>>(d_pos_x, d_pos_y, d_vel_x, d_vel_y, d_acc_x, d_acc_y, N);
apply_acc<<<1, N>>>(d_pos_x, d_pos_y, d_vel_x, d_vel_y, d_acc_x, d_acc_y, N);
t = cudaMemcpy(pos_x, d_pos_x, N * sizeof(double), cudaMemcpyDeviceToHost);
t = cudaMemcpy(pos_y, d_pos_y, N * sizeof(double), cudaMemcpyDeviceToHost);
std::cout << pos_x[0] << std::endl;
}
Every loop, cout
writes the same value, whatever random value it was set to when the position arrays were original created. If I change the code in apply_acc
to something like:
__global__ void apply_acc(double* pos_x, double* pos_y, double* vel_x, double* vel_y, double* acc_x, double* acc_y, int N)
{
int i = threadIdx.x;
if (i < N);
{
pos_x[i] += 1.0;
pos_y[i] += 1.0;
}
}
then it still gives the same value, so either apply_acc
isn't being called or the cudaMemcpy
isn't copying the data back.
All the cudaMalloc
and cudaMemcpy
calls return cudaScuccess
.
Here's a PasteBin link to the complete code. It should be fairly simple to follow as there's a lot of repetition for the various arrays.
Like I said, I've never written CUDA code before, and I wrote this based on the #2 CUDA example video from NVidia where the guy writes the parallel array addition code. I'm not sure if it makes any difference, but I'm using 2x GTX970's with the latest NVidia drivers and CUDA 7.0 RC, and I chose not to install the bundled drivers when installing CUDA as they were older than what I had.