Don't confuse a type's members with variables. A class/struct definition is merely describing what constitutes a type, without actually declaring the existence of any variables, anything to be constructed on memory, anything addressable.
In the traditional sense, modern class design practices recommend you pretend they are "black boxes": stuff goes in, they can perform certain tasks, maybe output some other info. We do this with class methods all the time, briefly describing their signature on the .h/.hpp/.hxx file and hiding the implementation details in the .cpp/.cc/.cxx file.
While the same philosophy can be applied to members, the current state of C++, how translation units are compiled individually make this way harder to implement. There's certainly nothing "out of the box" that helps you here. The basic, fundamental problem is that for almost anything to use your class, it kind of needs to know the size in bytes, and this is something constrained by the member fields and the order of declaration. Even if they're private and nothing outside the scope of the type should be able to manipulate them, they still need to briefly know what they are.
If you actually want to hide this information to outsiders, certain idioms such as PImpl and inlined PImpl can help. But I'd recommend you don't go this way unless you're actually:
- Writing a library with a semi-stable ABI, even if you make tons of changes.
- Need to hide non-portable, platform-specific code.
- Need to reduce pre-processor times due to an abundance of includes.
- Need to reduce compile times directly impacted by this exposure of information.
What the guideline is actually talking about is to never declare global variables in headers. Any translation unit that takes advantage of your header, even if indirectly, will end up declaring its own global variable as per header instructions. Everything will compile just fine when examined individually, but the linker will complain that you have more than one definition for the same thing (which is a big no-no in C++)
If you need to reserve memory / construct something and bind it to a variable's name, always try to make that happen in the source file(s).