I tried to concatenate a large number of columns containing integers in one string.
Basically, starting from:
df = pd.DataFrame({'id':[1,2,3,4],'a':[0,1,2,3], 'b':[4,5,6,7], 'c':[8,9,0,1]})
To obtain:
id join
0 1 481
1 2 592
2 3 603
3 4 714
I found several methods to do this (here and here):
Method 1:
conc['glued']=''
i=1
while i < len(df.columns):
conc['glued'] = conc['glued'] + df[df.columns[i]].values.astype(str)
i=i+1
This method work, but is a bit long (45min on my "test" case of 18,000 rows x 40,000 columns). I am concerned by the loop on the columns as this program should be applied at the end on tables of 600.000 columns and I am afraid it will be too long.
Method 2a
conc['join']=[''.join(row) for row in df[df.columns[1:]].values.astype(str)]
Method 2b
conc['apply'] = df[df.columns[1:]].apply(lambda x: ''.join(x.astype(str)), axis=1)
Both of these methods are 10 times more efficient than the previous one, iterate on rows which is good and work perfectly on my "debug" table df
. But, when I apply it to my "test" table of 18k x 40k, it leads to a MemoryError:
(I have 60% of my 32GB of RAM occupied after reading the corresponding csv file).
I can copy my DataFrame without overpass the memory, but curiously, applying this method make the code crash.
Do you see how I can fix and improve this code to use an efficient row based iteration? Thank you !
Appendix: Here is the code I use on my test case:
geno_reader = pd.read_csv(genotype_file,header=0,compression='gzip', usecols=geno_columns_names)
fimpute_geno = pd.DataFrame({'SampID': geno_reader['SampID']})
I should use the chunksize option to read this file but I haven't yet really understand how to use it after reading.
Method 1:
fimpute_geno['Calls'] = ''
for i in range(1,len(geno_reader.columns)):
fimpute_geno['Calls'] = fimpute_geno['Calls']\
+ geno_reader[geno_reader.columns[i]].values.astype(int).astype(str)
This work in 45min.
There is some quite disgusting piece of code like the .astype(int).astype(str)
. I don't know why Python don't recognize my integers and consider them as float.
Method 2:
fimpute_geno['Calls'] = geno_reader[geno_reader.columns[1:]]\
.apply(lambda x: ''.join(x.astype(int).astype(str)), axis=1)
This leads to an MemoryError: