I got this working by creating a wrapper class over the broadcast variable. The updateAndGet method of wrapper class returns the refreshed broadcast variable. I am calling this function inside dStream.transform -> as per the Spark Documentation
http://spark.apache.org/docs/latest/streaming-programming-guide.html#transform-operation
Transform Operation states:
"the supplied function gets called in every batch interval. This allows you to do time-varying RDD operations, that is, RDD operations, number of partitions, broadcast variables, etc. can be changed between batches."
BroadcastWrapper class will look like :
public class BroadcastWrapper {
private Broadcast<ReferenceData> broadcastVar;
private Date lastUpdatedAt = Calendar.getInstance().getTime();
private static BroadcastWrapper obj = new BroadcastWrapper();
private BroadcastWrapper(){}
public static BroadcastWrapper getInstance() {
return obj;
}
public JavaSparkContext getSparkContext(SparkContext sc) {
JavaSparkContext jsc = JavaSparkContext.fromSparkContext(sc);
return jsc;
}
public Broadcast<ReferenceData> updateAndGet(SparkContext sparkContext){
Date currentDate = Calendar.getInstance().getTime();
long diff = currentDate.getTime()-lastUpdatedAt.getTime();
if (var == null || diff > 60000) { //Lets say we want to refresh every 1 min = 60000 ms
if (var != null)
var.unpersist();
lastUpdatedAt = new Date(System.currentTimeMillis());
//Your logic to refresh
ReferenceData data = getRefData();
var = getSparkContext(sparkContext).broadcast(data);
}
return var;
}
}
You can use this broadcast variable updateAndGet function in stream.transform method that allows RDD-RDD transformations
objectStream.transform(stream -> {
Broadcast<Object> var = BroadcastWrapper.getInstance().updateAndGet(stream.context());
/**Your code to manipulate stream **/
});
Refer to my full answer from this pos :https://stackoverflow.com/a/41259333/3166245
Hope it helps