If you only need the four items in that list, you should just tabulate:
indcols <- paste0('index',1:3)
lapply(new[,indcols,with=FALSE],table) # counts
lapply(new[,indcols,with=FALSE],function(x)prop.table(table(x))) # means
# or...
lapply(
new[,indcols,with=FALSE],
function(x){
z<-table(x)
rbind(count=z,mean=prop.table(z))
})
This gives
$index1
a b c d e
count 200.0 200.0 200.0 200.0 200.0
mean 0.2 0.2 0.2 0.2 0.2
$index2
f g h i j k l m n o
count 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
mean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
$index3
p q r s
count 250.00 250.00 250.00 250.00
mean 0.25 0.25 0.25 0.25
The previous approach would work on a data.frame or a data.table, but is rather complicated. With a data.table, one can use the melt
syntax:
melt(new, id="id")[,.(
N=.N,
mean=.N/nrow(new)
), by=.(variable,value)]
which gives
variable value N mean
1: index1 a 200 0.20
2: index1 b 200 0.20
3: index1 c 200 0.20
4: index1 d 200 0.20
5: index1 e 200 0.20
6: index2 f 100 0.10
7: index2 g 100 0.10
8: index2 h 100 0.10
9: index2 i 100 0.10
10: index2 j 100 0.10
11: index2 k 100 0.10
12: index2 l 100 0.10
13: index2 m 100 0.10
14: index2 n 100 0.10
15: index2 o 100 0.10
16: index3 p 250 0.25
17: index3 q 250 0.25
18: index3 r 250 0.25
19: index3 s 250 0.25
This approach was mentioned by @Arun in a comment (and implemented by him also, I think..?). To see how it works, first have a look at melt(new, id="id")
which transforms the original data.table.
As mentioned in the comments, melting a data.table requires installing and loading reshape2
for some versions of the data.table
package.
If you also need the dummies, they can be made in a loop as in the linked question:
newcols <- list()
for (i in indcols){
vals = unique(new[[i]])
newcols[[i]] = paste(vals,i,sep='_')
new[,(newcols[[i]]):=lapply(vals,function(x)get(i)==x)]
}
This stores the groups of columns associated with each variable in newcols
for convenience. If you wanted to do the tabulation just with these dummies (instead of the underlying variables as in solution above), you could do
lapply(
indcols,
function(i) new[,lapply(.SD,function(x){
z <- sum(x)
list(z,z/.N)
}),.SDcols=newcols[[i]] ])
which gives a similar result. I just wrote it this way to illustrate how data.table
syntax can be used. You could again avoid square brackets and .SD
here:
lapply(
indcols,
function(i) sapply(
new[, newcols[[i]], with=FALSE],
function(x){
z<-sum(x)
rbind(z,z/length(x))
}))
But anyway: just use table
if you can hold onto the underlying variables.