My question is whether monads in Haskell actually maintain Haskell's purity, and if so how. Frequently I have read about how side effects are impure but that side effects are needed for useful programs (e.g. I/O). In the next sentence it is stated that Haskell's solution to this is monads. Then monads are explained to some degree or another, but not really how they solve the side-effect problem.
I have seen this and this, and my interpretation of the answers is actually one that came to me in my own readings -- the "actions" of the IO monad are not the I/O themselves but objects that, when executed, perform I/O. But it occurs to me that one could make the same argument for any code or perhaps any compiled executable. Couldn't you say that a C++ program only produces side effects when the compiled code is executed? That all of C++ is inside the IO monad and so C++ is pure? I doubt this is true, but I honestly don't know in what way it is not. In fact, didn't Moggi (sp?) initially use monads to model the denotational semantics of imperative programs?
Some background: I am a fan of Haskell and functional programming and I hope to learn more about both as my studies continue. I understand the benefits of referential transparency, for example. The motivation for this question is that I am a grad student and I will be giving 2 1-hour presentations to a programming languages class, one covering Haskell in particular and the other covering functional programming in general. I suspect that the majority of the class is not familiar with functional programming, maybe having seen a bit of scheme. I hope to be able to (reasonably) clearly explain how monads solve the purity problem without going into category theory and the theoretical underpinnings of monads, which I wouldn't have time to cover and anyway I don't fully understand myself -- certainly not well enough to present.
I wonder if "purity" in this context is not really well-defined?