For a side project in my PhD, I engaged in the task of modelling some system in Python. Efficiency wise, my program hits a bottleneck in the following problem, which I'll expose in a Minimal Working Example.
I deal with a large number of segments encoded by their 3D beginning and endpoints, so each segment is represented by 6 scalars.
I need to calculate a pairwise minimal intersegment distance. The analytical expression of the minimal distance between two segments is found in this source. To the MWE:
import numpy as np
N_segments = 1000
List_of_segments = np.random.rand(N_segments, 6)
Pairwise_minimal_distance_matrix = np.zeros( (N_segments,N_segments) )
for i in range(N_segments):
for j in range(i+1,N_segments):
p0 = List_of_segments[i,0:3] #beginning point of segment i
p1 = List_of_segments[i,3:6] #end point of segment i
q0 = List_of_segments[j,0:3] #beginning point of segment j
q1 = List_of_segments[j,3:6] #end point of segment j
#for readability, some definitions
a = np.dot( p1-p0, p1-p0)
b = np.dot( p1-p0, q1-q0)
c = np.dot( q1-q0, q1-q0)
d = np.dot( p1-p0, p0-q0)
e = np.dot( q1-q0, p0-q0)
s = (b*e-c*d)/(a*c-b*b)
t = (a*e-b*d)/(a*c-b*b)
#the minimal distance between segment i and j
Pairwise_minimal_distance_matrix[i,j] = sqrt(sum( (p0+(p1-p0)*s-(q0+(q1-q0)*t))**2)) #minimal distance
Now, I realize this is extremely inefficient, and this is why I am here. I have looked extensively in how to avoid the loop, but I run into a bit of a problem. Apparently, this sort of calculations is best done with the cdist of python. However, the custom distance functions it can handle have to be binary functions. This is a problem in my case, because my vectors have specifically a length of 6, and have to bit split into their first and last 3 components. I don't think I can translate the distance calculation into a binary function.
Any input is appreciated.