I am teaching myself how to run some Markov models in R, by working through the textbook "Hidden Markov Models for Time Series: An Introduction using R". I am a bit stuck on how to go about implementing something that is mentioned in the text.
So, I have the following function:
f <- function(samples,lambda,delta) -sum(log(outer(samples,lambda,dpois)%*%delta))
Which I can optimize with respect to, say, lambda using:
optim(par, fn=f, samples=x, delta=d)
where "par" is the initial guess for lambda, for some x and d.
Which works perfectly fine. However, in the part of the text corresponding to the example I am trying to reproduce, they note: "The parameters delta and lambda are constrained by sum(delta_i)=1 for i=1,...m, delta_i>0, and lambda_i>0. It is therefore necessary to reparametrize if one wishes to use an unconstrained optimizer such as nlm". One possibility is to maximize the likelihood with respect to the 2m-1 unconstrained parameters".
The unconstrained parameters are given by
eta<-log(lambda)
tau<-log(delta/(1-sum(delta))
I don't entirely understand how to go about implementing this. How would I write a function to optimize over this transformed parameter space?