7

This is the code I have. Due to content of the raw data to be parsed, I end up with the 'user list' and the 'tweet list' being of different length. When writing the lists as columns in a data frame, I get ValueError: arrays must all be same length. I realize this, but have been looking for a way to work around it, printing 0 or NaN in the right places of the shorter array. Any ideas?

import pandas
from bs4 import BeautifulSoup
soup = BeautifulSoup(open('#raw.html'))
chunk = soup.find_all('div', class_='content')

userlist = []
tweetlist = []

for tweet in chunk:
    username = tweet.find_all(class_='username js-action-profile-name')
    for user in username:
        user2 = user.get_text()
        userlist.append(user2)

for text in chunk:
    tweets = text.find_all(class_='js-tweet-text tweet-text')
for tweet in tweets:
    tweet2 = tweet.get_text().encode('utf-8')
    tweetlist.append('|'+tweet2)

print len(tweetlist)
print len(userlist)

#MAKE A DATAFRAME WITH THIS
data = {'tweet' : tweetlist, 'user' : userlist}
frame = pandas.DataFrame(data)
print frame

# Export dataframe to csv
frame.to_csv('#parsed.csv', index=False)
jww
  • 97,681
  • 90
  • 411
  • 885
Simon Lindgren
  • 2,011
  • 12
  • 32
  • 46
  • Does this answer your question? [Creating dataframe from a dictionary where entries have different lengths](https://stackoverflow.com/questions/19736080/creating-dataframe-from-a-dictionary-where-entries-have-different-lengths) – Trenton McKinney Sep 10 '20 at 00:24
  • The question should be close as a duplicate, since the main point is to create dataframe from a `dict`, containing uneven `arrays`. `data = {'tweet' : tweetlist, 'user' : userlist}` and `frame = pandas.DataFrame(data)`. The duplicate answers this question and has an accepted answer. – Trenton McKinney Sep 10 '20 at 00:26

3 Answers3

13

I'm not sure that this is exactly what you want, but anyway:

d = dict(tweets=tweetlist, users=userlist)
pandas.DataFrame({k : pandas.Series(v) for k, v in d.iteritems()})
3

Try this:

frame = pandas.DataFrame.from_dict(d, orient='index')

After that, you should transpose your frame with:

frame = frame.transpose()

Then you can export to csv:

frame.to_csv('#parsed.csv', index=False)
Ekrem Gurdal
  • 1,118
  • 13
  • 14
0

you can easily solve this issue by write this code to make the data frame.

dict_df = pd.DataFrame({ key:pd.Series(value) for key, value in Sl.items() })