The name of this question does not do it justice. This is best explained by numerical example. Let's say I have the following portfolio data, called data
.
> data
Stdev AvgReturn
1 1.92 0.35
2 1.53 0.34
3 1.39 0.31
4 1.74 0.31
5 1.16 0.30
6 1.27 0.29
7 1.78 0.28
8 1.59 0.27
9 1.05 0.27
10 1.17 0.26
11 1.62 0.25
12 1.33 0.25
13 0.96 0.24
14 1.47 0.24
15 1.09 0.24
16 1.20 0.24
17 1.49 0.23
18 1.01 0.23
19 0.88 0.22
20 1.21 0.22
21 1.37 0.22
22 1.09 0.22
23 0.95 0.21
24 0.81 0.21
I have already sorted the data
data.frame by AvgReturn
to make this (what I believe to be easier). My goal is to essentially eliminate all the points that do not make sense to choose, i.e., I would not want a portfolio where I choose a lower AvgReturn
but receive a higher Stdev
(assuming stdev is an appropriate measure of risk, but I am assuming that for now).
Essentially, does any know of an efficient (in the code sense) way to choose the "rational" portfolio choices. I have manually created a third column to this data frame to show you which portfolio choices should be kept. I would want to remove portfolio 4 because I would never choose it since I can choose portfolio 3 and receive the same return and a lower stdev. Similarly, I would never choose 8 because I can choose 5 with a higher return and a lower stdev.
> res
Stdev AvgReturn Keep
1 1.92 0.35 TRUE
2 1.53 0.34 TRUE
3 1.39 0.31 TRUE
4 1.74 0.31 FALSE
5 1.16 0.30 TRUE
6 1.27 0.29 FALSE
7 1.78 0.28 FALSE
8 1.59 0.27 FALSE
9 1.05 0.27 TRUE
10 1.17 0.26 FALSE
11 1.62 0.25 FALSE
12 1.33 0.25 FALSE
13 0.96 0.24 TRUE
14 1.47 0.24 FALSE
15 1.09 0.24 FALSE
16 1.20 0.24 FALSE
17 1.49 0.23 FALSE
18 1.01 0.23 FALSE
19 0.88 0.22 TRUE
20 1.21 0.22 FALSE
21 1.37 0.22 FALSE
22 1.09 0.22 FALSE
23 0.95 0.21 FALSE
24 0.81 0.21 TRUE
The only way I can think of solving this issue is by looping through and checking each condition. This, however, will be relatively inefficient in R
my preferred language for this solution. I am having difficulty thinking of a vectorized solution. Any help is appreciated!
EDIT Here I believe is a solution:
domstrat <- function(data){
keep <- c(-1,sign(diff(cummin(data[[1]]))))
data <- data[which(keep!=0),]
return(data)
}
Stdev AvgReturn
1 1.92 0.35
2 1.53 0.34
3 1.39 0.31
5 1.16 0.30
9 1.05 0.27
13 0.96 0.24
19 0.88 0.22
24 0.81 0.21