The following program (adapted from here) is giving inconsistent results when compiled with GCC (4.8.2) and Clang (3.5.1). In particular, the GCC result does not change even when FLT_EVAL_METHOD
does.
#include <stdio.h>
#include <float.h>
int r1;
double ten = 10.0;
int main(int c, char **v) {
printf("FLT_EVAL_METHOD = %d\n", FLT_EVAL_METHOD);
r1 = 0.1 == (1.0 / ten);
printf("0.1 = %a, 1.0/ten = %a\n", 0.1, 1.0 / ten);
printf("r1=%d\n", r1);
}
Tests:
$ gcc -std=c99 t.c && ./a.out
FLT_EVAL_METHOD = 0
0.1 = 0x1.999999999999ap-4, 1.0/ten = 0x1.999999999999ap-4
r1=1
$ gcc -std=c99 -mfpmath=387 t.c && ./a.out
FLT_EVAL_METHOD = 2
0.1 = 0x0.0000000000001p-1022, 1.0/ten = 0x0p+0
r1=1
$ clang -std=c99 t.c && ./a.out
FLT_EVAL_METHOD = 0
0.1 = 0x1.999999999999ap-4, 1.0/ten = 0x1.999999999999ap-4
r1=1
$ clang -std=c99 -mfpmath=387 -mno-sse t.c && ./a.out
FLT_EVAL_METHOD = 2
0.1 = 0x0.07fff00000001p-1022, 1.0/ten = 0x0p+0
r1=0
Note that, according to this blog post, GCC 4.4.3 used to output 0 instead of 1 in the second test.
A possibly related question indicates that a bug has been corrected in GCC 4.6, which might explain why GCC's result is different.
I would like to confirm if any of these results would be incorrect, or if some subtle evaluation steps (e.g. a new preprocessor optimization) would justify the difference between these compilers.