The idea of a random generator that simulates a shuffle is good if you can get one whose maximum period you can control.
A Linear Congruential Generator calculates a random number with the formula:
x[i + 1] = (a * x[i] + c) % m;
The maximum period is m and it is achieved when the following properties hold:
- The parameters c and m are relatively prime.
- For every prime number r dividing m, a - 1 is a multiple of r.
- If m is a multiple of 4 then also a - 1 is multiple of 4.
My first darft involved making m the next multiple of 4 after the array length and then finding suitable a and c values. This was (a) a lot of work and (b) yielded very obvious results sometimes.
I've rethought this approach. We can make m the smallest power of two that the array length will fit in. The only prime factor of m is then 2, which will make every odd number relatively prime to it. With the exception of 1 and 2, m will be divisible by 4, which means that we must make a - 1 a multiple of 4.
Having a greater m than the array length means that we must discard all values that are illegal array indices. This will happen at most every other turn and should be negligible.
The following code yields pseudo random numbers with a period of exaclty m. I've avoided trivial values for a and c and on my (not too numerous) spot cheks, the results looked okay. At least there was no obvious cycling pattern.
So:
class RandomIndexer
{
public:
RandomIndexer(size_t length) : len(length)
{
m = 8;
while (m < length) m <<= 1;
c = m / 6 + uniform(5 * m / 6);
c |= 1;
a = m / 12 * uniform(m / 6);
a = 4*a + 1;
x = uniform(m);
}
size_t next()
{
do { x = (a*x + c) % m; } while (x >= len);
return x;
}
private:
static size_t uniform(size_t m)
{
double p = std::rand() / (1.0 + RAND_MAX);
return static_cast<int>(m * p);
}
size_t len;
size_t x;
size_t a;
size_t c;
size_t m;
};
You can then use the generator like this:
std::vector<int> list;
for (size_t i = 0; i < 3; i++) list.push_back(i);
RandomIndexer ix(list.size());
for (size_t i = 0; i < list.size(); i++) {
std::cout << list[ix.next()]<< std::endl;
}
I am aware that this still isn't a great random number generator, but it is reasonably fast, doesn't require a copy of the array and seems to work okay.
If the approach of picking a and c randomly yields bad results, it might be a good idea to restrict the generator to some powers of two and to hard-code literature values that have proven to be good.