I'm trying to calculate the largest eigenvalue/eigenvector pair with cuSolver released in CUDA 7.0 RC. The problem is that I'm getting CUSOLVER_INTERNAL_ERROR, and I don't know what can I do about it.
This is my handy stuff, used to call cuda/cusparse/cusolver functions.
// my handy stuff
#define CUDA_CALL(value) do { \
cudaError_t _m_cudaStat = value; \
if (_m_cudaStat != cudaSuccess) { \
fprintf(stderr, "Error %s at line %d in file %s\N", \
cudaGetErrorString(_m_cudaStat), __LINE__, __FILE__); \
exit(-1); \
}
} while(0)
#define CUSPARSE_CALL(value) do { \
cusparseStatus_t _m_status = value; \
if (_m_status != CUSPARSE_STATUS_SUCCESS){ \
fprintf(stderr, "Error %d at line %d in file %s\N", (int)_m_status, __LINE__, __FILE__); \
exit(-5); \
} \
} while(0)
#define CUSOLVER_CALL(value) do { \
cusolverStatus_t _m_status = value; \
if (_m_status != CUSOLVER_STATUS_SUCCESS){ \
fprintf(stderr, "Error %d at line %d in file %s\N", (int)_m_status, __LINE__, __FILE__); \
exit(-5); \
} \
} while(0)
And this is my code
#include "cusparse.h"
#include "cusolverSp.h"
#include <cuda_runtime.h>
#include <math.h>
void dpss( size_t N, double NW, double *eigenvector );
int main()
{
// parameters for generation of dpss
size_t N = 128;
double NW = 1;
double *eigenvector = NULL;
eigenvector = new double[ N*sizeof( double ) ];
dpss( N, NW, eigenvector );
return 0;
}
void dpss( size_t N, double NW, double *eigenvector )
{
// define matrix T (NxN)
double** T = new double*[ N ];
for(int i = 0; i < N; ++i)
T[ i ] = new double[ N ];
// fill in T as function of ( N, W )
// T is a tridiagonal matrix, i. e., it has diagonal, subdiagonal and superdiagonal
// the others elements are 0
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if( j == i - 1 ) // subdiagonal
T[ i ][ j ] = ( (double)N - i )*i/2;
else if( j == i ) // diagonal
T[ i ][ j ] = pow( (double)(N-1)/2 - i, 2 )*std::cos( 2*NW/(double)N*M_PI )*( j == i );
else if( j == i + 1 ) // superdiagonal
T[ i ][ j ] = ( i + 1 )*( (double)N - 1 - i )/2*( j == i + 1 );
else // others elements
T[ i ][ j ] = 0;
}
}
// declarations needed
cusolverStatus_t statCusolver = CUSOLVER_STATUS_SUCCESS;
cusolverSpHandle_t handleCusolver = NULL;
cusparseHandle_t handleCusparse = NULL;
cusparseMatDescr_t descrA = NULL;
int *h_cooRowIndex = NULL, *h_cooColIndex = NULL;
double *h_cooVal = NULL;
int *d_cooRowIndex = NULL, *d_cooColIndex = NULL, *d_csrRowPtr = NULL;
double *d_cooVal = NULL;
int nnz;
double *h_eigenvector0 = NULL, *d_eigenvector0 = NULL, *d_eigenvector = NULL;
double max_lambda;
// define interval of eigenvalues of T
// interval is [-max_lambda,max_lambda]
max_lambda = ( N - 1 )*( N + 2 ) + N*( N + 1 )/8 + 0.25;
// amount of nonzero elements of T
nnz = 3*N - 2;
// allocate host memory
h_cooRowIndex = new int[ nnz*sizeof( int ) ];
h_cooColIndex = new int[ nnz*sizeof( int ) ];
h_cooVal = new double[ nnz*sizeof( double ) ];
h_eigenvector0 = new double[ N*sizeof( double ) ];
// fill in vectors that describe T as a sparse matrix
int counter = 0;
for (int i = 0; i < N; i++ ) {
for( int j = 0; j < N; j++ ) {
if( T[ i ][ j ] != 0 ) {
h_cooColIndex[counter] = j;
h_cooRowIndex[counter] = i;
h_cooVal[counter++] = T[ i ][ j ];
}
}
}
// fill in initial eigenvector guess
for( int i = 0; i < N; i++ )
h_eigenvector0[ i ] = (double)1/(i+1);
// allocate device memory
CUDA_CALL( cudaMalloc((void**)&d_cooRowIndex,nnz*sizeof( int )) );
CUDA_CALL( cudaMalloc((void**)&d_cooColIndex,nnz*sizeof( int )) );
CUDA_CALL( cudaMalloc((void**)&d_cooVal, nnz*sizeof( double )) );
CUDA_CALL( cudaMalloc((void**)&d_csrRowPtr, (N+1)*sizeof( int )) );
CUDA_CALL( cudaMalloc((void**)&d_eigenvector0, N*sizeof( double )) );
CUDA_CALL( cudaMalloc((void**)&d_eigenvector, N*sizeof(d_eigenvector[0])) );
// copy data to device
CUDA_CALL( cudaMemcpy( d_cooRowIndex, h_cooRowIndex, (size_t)(nnz*sizeof( int )), cudaMemcpyHostToDevice ) );
CUDA_CALL( cudaMemcpy( d_cooColIndex, h_cooColIndex, (size_t)(nnz*sizeof( int )), cudaMemcpyHostToDevice ) );
CUDA_CALL( cudaMemcpy( d_cooVal, h_cooVal, (size_t)(nnz*sizeof( double )), cudaMemcpyHostToDevice ) );
CUDA_CALL( cudaMemcpy( d_eigenvector0, h_eigenvector0, (size_t)(N*sizeof( double )), cudaMemcpyHostToDevice ) );
// initialize cusparse and cusolver
CUSOLVER_CALL( cusolverSpCreate( &handleCusolver ) );
CUSPARSE_CALL( cusparseCreate( &handleCusparse ) );
// create and define cusparse matrix descriptor
CUSPARSE_CALL( cusparseCreateMatDescr(&descrA) );
CUSPARSE_CALL( cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL ) );
CUSPARSE_CALL( cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO ) );
// transform from coordinates (COO) values to compressed row pointers (CSR) values
CUSPARSE_CALL( cusparseXcoo2csr( handleCusparse, d_cooRowIndex, nnz, N, d_csrRowPtr, CUSPARSE_INDEX_BASE_ZERO ) );
// define some parameters and call cusolverSpScsreigvsi
int maxite = 1e6;
double tol = 1;
double mu = 0;
statCusolver = cusolverSpDcsreigvsi( handleCusolver, N ,nnz, descrA, d_cooVal, d_csrRowPtr, d_cooColIndex, max_lambda, d_eigenvector0, maxite, tol, &mu, d_eigenvector );
// here statCusolver = CUSOLVER_INTERNAL_ERROR
cudaDeviceSynchronize();
CUDA_CALL( cudaGetLastError() );
// copy from device to host
CUDA_CALL( cudaMemcpy( h_eigenvector0, d_eigenvector, (size_t)(N*sizeof( double )), cudaMemcpyDeviceToHost ) );
// destroy and free stuff
CUSPARSE_CALL( cusparseDestroyMatDescr( descrA ) );
CUSPARSE_CALL( cusparseDestroy( handleCusparse ) );
CUSOLVER_CALL( cusolverSpDestroy( handleCusolver ) );
CUDA_CALL( cudaFree( d_cooRowIndex ) );
CUDA_CALL( cudaFree( d_cooColIndex ) );
CUDA_CALL( cudaFree( d_cooVal ) );
CUDA_CALL( cudaFree( d_csrRowPtr ) );
CUDA_CALL( cudaFree( d_eigenvector0 ) );
CUDA_CALL( cudaFree( d_eigenvector ) );
delete[] h_eigenvector0;
delete[] h_cooRowIndex;
delete[] h_cooColIndex;
delete[] h_cooVal;
}
I already tried different choices for initial eigenvalue guess (namely max_lambda - or mu0 in the cuSolver library tutorial), initial eigenvector guess (h_eigenvector0 or d_eigenvector0), tolerance (tol), even amount of maximum iteration (maxite).
I already checked if the sparse matrix was properly written (it seemed correct to me). I also checked the returned eigenvector with Matlab, and they are completely different (and I think they shouldn't be).
I don't know what else can I do, but if someone does, please let me konw!!
Thanks in advance.