For the 2 and 1d case, this indexing works:
A[np.arange(J.shape[0]), J]
Which can be applied to more dimensions by reshaping to 2d (and back):
A.reshape(-1, A.shape[-1])[np.arange(np.prod(A.shape[:-1])).reshape(J.shape), J]
For 3d A
this works:
A[np.arange(J.shape[0])[:,None], np.arange(J.shape[1])[None,:], J]
where the 1st 2 arange
indices broadcast to the same dimension as J
.
With functions in lib.index_tricks
, this can be expressed as:
A[np.ogrid[0:J.shape[0],0:J.shape[1]]+[J]]
A[np.ogrid[slice(J.shape[0]),slice(J.shape[1])]+[J]]
or for multiple dimensions:
A[np.ix_(*[np.arange(x) for x in J.shape])+(J,)]
A[np.ogrid[[slice(k) for k in J.shape]]+[J]]
For small A
and J
(eg 2*3*4), J.choose(np.rollaxis(A,-1))
is faster. All of the extra time is in preparing the index tuple. np.ix_
is faster than np.ogrid
.
np.choose
has a size limit. At its upper end it is slower than ix_
:
In [610]: Abig=np.arange(31*31).reshape(31,31)
In [611]: Jbig=np.arange(31)
In [612]: Jbig.choose(np.rollaxis(Abig,-1))
Out[612]:
array([ 0, 32, 64, 96, 128, 160, ... 960])
In [613]: timeit Jbig.choose(np.rollaxis(Abig,-1))
10000 loops, best of 3: 73.1 µs per loop
In [614]: timeit Abig[np.ix_(*[np.arange(x) for x in Jbig.shape])+(Jbig,)]
10000 loops, best of 3: 22.7 µs per loop
In [635]: timeit Abig.ravel()[Jbig+Abig.shape[-1]*np.arange(0,np.prod(Jbig.shape)).reshape(Jbig.shape) ]
10000 loops, best of 3: 44.8 µs per loop
I did similar indexing tests at https://stackoverflow.com/a/28007256/901925, and found that flat
indexing was faster for much larger arrays (e.g. n0=1000
). That's where I learned about the 32 limit for choice
.