I have used websockets to stream data between the two machines. You grab the image in machine 1 and stream it to machine 2 which is listening for connections on a certain port.
Machine 1 (client):
cap=cv2.VideoCapture(0)
clientsocket=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
clientsocket.connect(('localhost',8089))
while(cap.isOpened()):
ret,frame=cap.read()
memfile = StringIO.StringIO()
np.save(memfile, frame)
memfile.seek(0)
data = json.dumps(memfile.read().decode('latin-1'))
clientsocket.sendall(struct.pack("L", len(data))+data)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
Machine 2 (server thread):
self.isRunning = True
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print 'Socket created'
s.bind((self.hostname, self.port))
print 'Socket bind complete'
data = ""
payload_size = struct.calcsize("L")
s.listen(10)
print 'Socket now listening'
while self.isRunning:
conn, addr = s.accept()
while True:
data = conn.recv(4096)
if data:
packed_msg_size = data[:payload_size]
data = data[payload_size:]
msg_size = struct.unpack("L", packed_msg_size)[0]
while len(data) < msg_size:
data += conn.recv(10000)
frame_data = data[:msg_size]
memfile = StringIO.StringIO()
memfile.write(json.loads(frame_data).encode('latin-1'))
memfile.seek(0)
frame = numpy.load(memfile)
ret, jpeg = cv2.imencode('.jpg', frame)
self.jpeg = jpeg
self.connected = True
else:
conn.close()
self.connected = False
break
self.connected = False
Note for the the json serializer which greatly increases the performance of the serialization process, specially comparing to pickle, as explained in this awesome article.
Source code can be found here.