Simple. We just do a little probing to find out if a token is 1
:
#define CAT(a, ...) PRIMITIVE_CAT(a, __VA_ARGS__)
#define PRIMITIVE_CAT(a, ...) a ## __VA_ARGS__
#define CHECK_N(x, n, ...) n
#define CHECK(...) CHECK_N(__VA_ARGS__, 0,)
#define PROBE(x) x, 1,
#define IS_1(x) CHECK(PRIMITIVE_CAT(IS_1_, x))
#define IS_1_1 PROBE(~)
So IS_1
expands to 1
if the token is a 1
, otherwise it expands to 0
.
So next, count the number of arguments(up to 8):
#define NARGS_SEQ(_1,_2,_3,_4,_5,_6,_7,_8,N,...) N
#define NARGS(...) NARGS_SEQ(__VA_ARGS__, 8, 7, 6, 5, 4, 3, 2, 1)
Then overload on whether it's equal to 1
or not:
#define M_1 f
#define M_0 g
#define M(...) CAT(M_, IS_1(NARGS(__VA_ARGS__)))(__VA_ARGS__)
So then you can call M
like this:
M(x) // Expands to f(x)
M(x, "%d%d%d", 1, 2, 3) // Expands to g(x, "%d%d%d", 1, 2, 3)
Now, you can only count up to 64 arguments(my example counts up to 8), for standard C preprocessor(gcc can count up to 32767 arguments). If you need to have more arguments than it is better to use a sequence, which has no limit. So first write a method to convert the sequence back to arguments using sequence iteration:
#define TO_ARGS(seq) TO_ARGS_END(TO_ARGS_1 seq)
#define TO_ARGS_END(...) TO_ARGS_END_I(__VA_ARGS__)
#define TO_ARGS_END_I(...) __VA_ARGS__ ## _END
#define TO_ARGS_1(x) x TO_ARGS_2
#define TO_ARGS_2(x) , x TO_ARGS_3
#define TO_ARGS_3(x) , x TO_ARGS_2
#define TO_ARGS_1_END
#define TO_ARGS_2_END
#define TO_ARGS_3_END
Next define the M
macro to overload on whether there is one element in the sequence:
#define IS_PAREN(x) CHECK(IS_PAREN_PROBE x)
#define IS_PAREN_PROBE(...) PROBE(~)
#define EAT(...)
#define M_1(seq) g(TO_ARGS(seq))
#define M_0(seq) f(TO_ARGS(seq))
#define M(seq) CAT(M_, IS_PAREN(EAT seq))(seq)
And then you can call it like this:
M((x)) // Expands to f(x)
M((x)("%d%d%d")(1)(2)(3)) // Expands to g(x, "%d%d%d", 1, 2, 3)
Of course in C++14 if you don't need source information then you can use variadiac templates instead:
template<class T>
auto M(T&& xs) -> decltype(f(std::forward<T>(x)))
{
return f(std::forward<T>(x));
}
template<class T, class U, class... Ts>
auto M(T&& x, U&& y, Ts&&... xs) -> decltype(g(std::forward<T>(x), std::forward<U>(y), std::forward<Ts>(xs)...))
{
return g(std::forward<T>(x), std::forward<U>(y),std::forward<Ts>(xs)...);
}
Or for constructors:
class M : f, g
{
template<class T>
M(T&& xs) : f(std::forward<T>(x))
{}
template<class T, class U, class... Ts>
M(T&& x, U&& y, Ts&&... xs) : g(std::forward<T>(x), std::forward<U>(y), std::forward<Ts>(xs)...)
{}
};