I am trying to use itertools.product to manage the bookkeeping of some nested for loops, where the number of nested loops is not known in advance. Below is a specific example where I have chosen two nested for loops; the choice of two is only for clarity, what I need is a solution that works for an arbitrary number of loops.
This question provides an extension/generalization of the question appearing here: Efficient algorithm for evaluating a 1-d array of functions on a same-length 1d numpy array
Now I am extending the above technique using an itertools trick I learned here: Iterating over an unknown number of nested loops in python
Preamble:
from itertools import product
def trivial_functional(i, j): return lambda x : (i+j)*x
idx1 = [1, 2, 3, 4]
idx2 = [5, 6, 7]
joint = [idx1, idx2]
func_table = []
for items in product(*joint):
f = trivial_functional(*items)
func_table.append(f)
At the end of the above itertools loop, I have a 12-element, 1-d array of functions, func_table, each element having been built from the trivial_functional.
Question:
Suppose I am given a pair of integers, (i_1, i_2), where these integers are to be interpreted as the indices of idx1 and idx2, respectively. How can I use itertools.product to determine the correct corresponding element of the func_table array?
I know how to hack the answer by writing my own function that mimics the itertools.product bookkeeping, but surely there is a built-in feature of itertools.product that is intended for exactly this purpose?