The major issue is using the series outside its range where it well converges.
As OP said "converted x to radX = (x*PI)/180" indicates the OP is starting with degrees rather than radians, the OP is in luck. The first step in finding my_sin(x)
is range reduction. When starting with degrees, the reduction is exact. So reduce the range before converting to radians.
long double calcMaclaurinPolynom(double x /* degrees */, int N){
// Reduce to range -360 to 360
// This reduction is exact, no round-off error
x = fmod(x, 360);
// Reduce to range -180 to 180
if (x >= 180) {
x -= 180;
x = -x;
} else if (x <= -180) {
x += 180;
x = -x;
}
// Reduce to range -90 to 90
if (x >= 90) {
x = 180 - x;
} else if (x <= -90) {
x = -180 - x;
}
//now convert to radians.
x = x*PI/180;
// continue with regular code
Alternative, if using C11, use remquo()
. Search SO for sample code.
As @user3386109 commented above, no need to "convert back to degrees".
[Edit]
With typical summation series, summing the least significant terms first improves the precision of the answer. With OP's code this can be done with
for (int i = N; i >= 0; i--)
Alternatively, rather than iterating a fixed number of times, loop until the term has no significance to the sum. The following uses recursion to sum the least significant terms first. With range reduction in the -90 to 90 range, the number of iterations is not excessive.
static double sin_d_helper(double term, double xx, unsigned i) {
if (1.0 + term == 1.0)
return term;
return term - sin_d_helper(term * xx / ((i + 1) * (i + 2)), xx, i + 2);
}
#include <math.h>
double sin_d(double x_degrees) {
// range reduction and d --> r conversion from above
double x_radians = ...
return x_radians * sin_d_helper(1.0, x_radians * x_radians, 1);
}