I have spent a lot of time on multiple posts and tutorials, but I still do not understand wich "rule" I have to apply to my current data, and why.
My experiment follows a within-subject design, as every subjects (n=17) performed a task in 2 conditions, accross 5 blocks of trials. VD is the mean RTs, fixed effects are condition and block, random effect is subject.
I would like to analyse the interaction between condition and block.
Using aov
I first aggregated my data:
ag<-aggregate(RT~condition+block+subject,data=d, FUN=mean)
But then I don't know if I have to include my within-subject factors into my Error term:
(1)aov<-aov(RT~ condition * block + Error(subject/(condition * block)), data=ag)
OR
(2)aov<-aov(RT~ condition * block + Error(subject), data=ag)
I have seen on several posts that the within factors have to be included in the error term, as in (1), but I do not understand how the dfs are calculated.
Using lmer
Additionally, I would like to attempt using lmer instead of aov.
I suspect that the equivalent of (2) would be:
lmer(RT ~ 1+(1|sujet)+condition*block, ag)
But if it is the (1) which is the correct one, I can not figure out how does it would have to be specified using lmer.