Discovery of the access pointers is quite cumbersome and static memory values are difficult to adapt to different compilers or game versions.
With API hooking of malloc(), free(), etc. there is a different method than following pointers. Discovery starts with recording all dynamic memory allocations and doing memory search in parallel. The found heap memory address is then reverse matched against the recorded memory allocations. You get to know the size of the object and the offset of your value within the object. You repeat this with backtracing and get the jump-back code address of a malloc() call or a C++ constructor. With that information you can track and modify all objects which get allocated from there. You dump the objects and compare them and find a lot more interesting values. E.g. the universal elite game trainer "ugtrain" does it like this on Linux. It uses LD_PRELOAD.
Adaption works by "objdump -D"-based disassembly and just searching for the library function call with the known memory size in it.
See: http://en.wikipedia.org/wiki/Trainer_%28games%29
Ugtrain source: https://github.com/sriemer/ugtrain
The malloc() hook looks like this:
static __thread bool no_hook = false;
void *malloc (size_t size)
{
void *mem_addr;
static void *(*orig_malloc)(size_t size) = NULL;
/* handle malloc() recursion correctly */
if (no_hook)
return orig_malloc(size);
/* get the libc malloc function */
no_hook = true;
if (!orig_malloc)
*(void **) (&orig_malloc) = dlsym(RTLD_NEXT, "malloc");
mem_addr = orig_malloc(size);
/* real magic -> backtrace and send out spied information */
postprocess_malloc(size, mem_addr);
no_hook = false;
return mem_addr;
}
But if the found memory address is located within the executable or a library in memory, then ASLR is likely the cause for the dynamic. On Linux, libraries are PIC (position-independent code) and with latest distributions all executables are PIE (position-independent executables).