Okay we have here 'identical' code passed to "the same" compiler but once
with a C flag and the other time with a C++ flag. As far as any reasonable
user is concerned nothing has changed. The code should be interpreted
identically by the compiler because nothing significant has happened.
Actually, that's not true. While I would be hard pressed to point to it in
a standard but the precise interpretation of 'const' has slight differences
between C and C++. In C it's very much an add-on, the 'const' flag
says that this normal variable 'a' should not be written to by the code
round here. But there is a possibility that it will be written to
elsewhere. With C++ the emphasis is much more to the immutable constant
concept and the compiler knows that this constant is more akin to an
'enum' that a normal variable.
So I expect this slight difference means that slightly different parse
trees are generated which eventually leads to different assembler.
This sort of thing is actually fairly common, code that's in the C/C++
subset does not always compile to exactly the same assembler even with
'the same' compiler. It tends to be caused by other language features
meaning that there are some things you can't prove about the code right
now in one of the languages but it's okay in the other.
Usually C is the performance winner (as was re-discovered by the Linux
kernel devs) because it's a simpler language but in this example, C++
would probably turn out faster (unless the C dev switches to a macro
or enum
and catches the unreasonable act of taking the address of an immutable constant).