I can't believe nobody's said this before, but it seems to me Python just wants you to write your own simple, mutable class instead of using a namedtuple
whenever you need the "namedtuple
" to be mutable.
Quick summary
Just jump straight down to Approach 5 below. It's short and to-the-point, and by far the best of these options.
Various, detailed approaches:
Approach 1 (good): simple, callable class with __call__()
Here is an example of a simple Point
object for (x, y)
points:
class Point():
def __init__(self, x, y):
self.x = x
self.y = y
def __call__(self):
"""
Make `Point` objects callable. Print their contents when they
are called.
"""
print("Point(x={}, y={})".format(self.x, self.y))
Now use it:
p1 = Point(1,2)
p1()
p1.x = 7
p1()
p1.y = 8
p1()
Here is the output:
Point(x=1, y=2)
Point(x=7, y=2)
Point(x=7, y=8)
This is pretty similar to a namedtuple
, except it is fully mutable, unlike a namedtuple
. Also, a namedtuple
isn't callable, so to see its contents, just type the object instance name withOUT parenthesis after it (as p2
in the example below, instead of as p2()
). See this example and output here:
>>> from collections import namedtuple
>>> Point2 = namedtuple("Point2", ["x", "y"])
>>> p2 = Point2(1, 2)
>>> p2
Point2(x=1, y=2)
>>> p2()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'Point2' object is not callable
>>> p2.x = 7
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
Approach 2 (better): use __repr__()
in place of __call__()
I just learned you can use __repr__()
in place of __call__()
, to get more namedtuple
-like behavior. Defining the __repr__()
method allows you to define "the 'official' string representation of an object" (see the official documentation here). Now, just calling p1
is the equivalent of calling the __repr__()
method, and you get identical behavior to the namedtuple
. Here is the new class:
class Point():
def __init__(self, x, y):
self.x = x
self.y = y
def __repr__(self):
"""
Obtain the string representation of `Point`, so that just typing
the instance name of an object of this type will call this method
and obtain this string, just like `namedtuple` already does!
"""
return "Point(x={}, y={})".format(self.x, self.y)
Now use it:
p1 = Point(1,2)
p1
p1.x = 7
p1
p1.y = 8
p1
Here is the output:
Point(x=1, y=2)
Point(x=7, y=2)
Point(x=7, y=8)
Approach 3 (better still, but a little awkward to use): make it a callable which returns an (x, y)
tuple
The original poster (OP) would also like something like this to work (see his comment below my answer):
x, y = Point(x=1, y=2)
Well, for simplicity, let's just make this work instead:
x, y = Point(x=1, y=2)()
# OR
p1 = Point(x=1, y=2)
x, y = p1()
While we are at it, let's also condense this:
self.x = x
self.y = y
...into this (source where I first saw this):
self.x, self.y = x, y
Here is the class definition for all of the above:
class Point():
def __init__(self, x, y):
self.x, self.y = x, y
def __repr__(self):
"""
Obtain the string representation of `Point`, so that just typing
the instance name of an object of this type will call this method
and obtain this string, just like `namedtuple` already does!
"""
return "Point(x={}, y={})".format(self.x, self.y)
def __call__(self):
"""
Make the object callable. Return a tuple of the x and y components
of the Point.
"""
return self.x, self.y
Here are some test calls:
p1 = Point(1,2)
p1
p1.x = 7
x, y = p1()
x2, y2 = Point(10, 12)()
x
y
x2
y2
I won't show pasting the class definition into the interpreter this time, but here are those calls with their output:
>>> p1 = Point(1,2)
>>> p1
Point(x=1, y=2)
>>> p1.x = 7
>>> x, y = p1()
>>> x2, y2 = Point(10, 12)()
>>> x
7
>>> y
2
>>> x2
10
>>> y2
12
Approach 4 (best so far, but a lot more code to write): make the class also an iterator
By making this into an iterator class, we can get this behavior:
x, y = Point(x=1, y=2)
# OR
x, y = Point(1, 2)
# OR
p1 = Point(1, 2)
x, y = p1
Let's get rid of the __call__()
method, but to make this class an iterator we will add the __iter__()
and __next__()
methods. Read more about these things here:
- https://treyhunner.com/2018/06/how-to-make-an-iterator-in-python/
- How to build a basic iterator?
- https://docs.python.org/3/library/exceptions.html#StopIteration
Here is the solution:
class Point():
def __init__(self, x, y):
self.x, self.y = x, y
self._iterator_index = 0
self._num_items = 2 # counting self.x and self.y
def __repr__(self):
"""
Obtain the string representation of `Point`, so that just typing
the instance name of an object of this type will call this method
and obtain this string, just like `namedtuple` already does!
"""
return "Point(x={}, y={})".format(self.x, self.y)
def __iter__(self):
return self
def __next__(self):
self._iterator_index += 1
if self._iterator_index == 1:
return self.x
elif self._iterator_index == 2:
return self.y
else:
raise StopIteration
And here are some test calls and their output:
>>> x, y = Point(x=1, y=2)
>>> x
1
>>> y
2
>>> x, y = Point(3, 4)
>>> x
3
>>> y
4
>>> p1 = Point(5, 6)
>>> x, y = p1
>>> x
5
>>> y
6
>>> p1
Point(x=5, y=6)
Approach 5 (USE THIS ONE) (Perfect!--best and cleanest/shortest approach): make the class an iterable, with the yield
generator keyword
Study these references:
- https://treyhunner.com/2018/06/how-to-make-an-iterator-in-python/
- What does the "yield" keyword do?
Here is the solution. It relies on a fancy "iterable-generator" (AKA: just "generator") keyword/Python mechanism, called yield
.
Basically, the first time an iterable calls for the next item, it calls the __iter__()
method, and stops and returns the contents of the first yield
call (self.x
in the code below). The next time an iterable calls for the next item, it picks up where it last left off (just after the first yield
in this case), and looks for the next yield
, stopping and returning the contents of that yield
call (self.y
in the code below). Each "return" from a yield
actually returns a "generator" object, which is an iterable itself, so you can iterate on it. Each new iterable call for the next item continues this process, starting up where it last left off, just after the most-recently-called yield
, until no more yield
calls exist, at which point the iterations are ended and the iterable has been fully iterated. Therefore, once this iterable has called for two objects, both yield
calls have been used up, so the iterator ends. The end result is that calls like this work perfectly, just as they did in Approach 4, but with far less code to write!:
x, y = Point(x=1, y=2)
# OR
x, y = Point(1, 2)
# OR
p1 = Point(1, 2)
x, y = p1
Here is the solution (a part of this solution can also be found in the treyhunner.com reference just above). Notice how short and clean this solution is!
Just the class definition code; no docstrings, so you can truly see how short and simple this is:
class Point():
def __init__(self, x, y):
self.x, self.y = x, y
def __repr__(self):
return "Point(x={}, y={})".format(self.x, self.y)
def __iter__(self):
yield self.x
yield self.y
With descriptive docstrings:
class Point():
def __init__(self, x, y):
self.x, self.y = x, y
def __repr__(self):
"""
Obtain the string representation of `Point`, so that just typing
the instance name of an object of this type will call this method
and obtain this string, just like `namedtuple` already does!
"""
return "Point(x={}, y={})".format(self.x, self.y)
def __iter__(self):
"""
Make this `Point` class an iterable. When used as an iterable, it will
now return `self.x` and `self.y` as the two elements of a list-like,
iterable object, "generated" by the usages of the `yield` "generator"
keyword.
"""
yield self.x
yield self.y
Copy and paste the exact same test code as used in the previous approach (Approach 4) just above, and you will get the exact same output as above as well!
References:
- https://docs.python.org/3/library/collections.html#collections.namedtuple
- Approach 1:
- What is the difference between
__init__
and __call__
?
- Approach 2:
- https://www.tutorialspoint.com/What-does-the-repr-function-do-in-Python-Object-Oriented-Programming
- Purpose of
__repr__
method?
- https://docs.python.org/3/reference/datamodel.html#object.__repr__
- Approach 4:
- *****[EXCELLENT!] https://treyhunner.com/2018/06/how-to-make-an-iterator-in-python/
- How to build a basic iterator?
- https://docs.python.org/3/library/exceptions.html#StopIteration
- Approach 5:
- See links from Approach 4, plus:
- *****[EXCELLENT!] What does the "
yield
" keyword do?
- What is the meaning of single and double underscore before an object name?