Console.WriteLine(pNResult);
calls BigRational.ToString()
under-the-hood, which prints the number in the form numerator/denominator
.
It's easy to miss the /
in the output given how large the numerator and denominator both are in this case.
BigRational
supports conversions to decimal
and to double
. The result is too small to fit in a decimal
in this case though. Converting to a double
, gives the result 7.89682541396914E-177
.
If you need better precision, you'll need a custom conversion to a decimal-format string, like the one in this Stackoverflow answer.
Using that custom conversion routine to get the result to 1000
decimal places -
Console.WriteLine(pNResult.ToDecimalString(1000));
- gives the result as:
0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000078968254139691306770128897137459492828971170349380336740935269651539684650525033676003134593283361305530675112470528408219177025044254116462798561450442318290046626248451723040397770263675109107145461310779641705093156106311143727608208629473359566457461384474633112850335950017209558136575135801388668687571284492241030561019606955986265585636660304889792027894460104216176719717671500843399685686146432982358441225578366059001576682388503227237202077881334695352338638383337717103303153521108812750644260562351186866587629456292506971252525125976755540274041651740194108430555751648707933592643410475214924394223640168857340953563111097979394441303100701008120008166339365089771585037880235325673143152814510586536335380671360865230428857049658368242543653234599817430185879648427434216378356518036776477170130227628307039
To check that your calculation code is operating correctly, you can add unit-tests for the different functions (Factorial
, Series
and the computation of P
itself).
An approach that is practical here is to calculate the results by hand for certain small values of k
, n
and p
and check that your functions compute the same results.
If you're using Visual Studio, you can use this MSDN page as a starting point for creating a unit-test project. Note that the functions under test must be visible to the unit-test project, and your unit-test project will need to have a reference added to your existing project where you're doing the computation, as explained in the link.
Starting with Factorial
, which is the easiest to check, you could add a test like this:
[TestClass]
public class UnitTestComputation
{
[TestMethod]
public void TestFactorial()
{
Assert.AreEqual(1, Program.Factorial(0));
Assert.AreEqual(1, Program.Factorial(1));
Assert.AreEqual(2, Program.Factorial(2));
Assert.AreEqual(6, Program.Factorial(3));
Assert.AreEqual(24, Program.Factorial(4));
}
}
The code in your question passes that test.
You can then add a test method for your Series
function:
[TestMethod]
public void TestSeries()
{
int k = 1;
int p = 1;
BigRational expected = 1;
Assert.AreEqual(expected, Program.Series(k, p));
k = 2;
p = 1;
expected += 1;
Assert.AreEqual(expected, Program.Series(k, p));
k = 3;
p = 1;
expected += (BigRational)1 / (BigRational)2;
Assert.AreEqual(expected, Program.Series(k, p));
k = 1;
p = 2;
expected = 1;
Assert.AreEqual(expected, Program.Series(k, p));
k = 2;
p = 2;
expected += 2;
Assert.AreEqual(expected, Program.Series(k, p));
}
This showed up some problems in your code:
n
shouldn't actually be a parameter to this function, because in this context n
isn't the parameter to function P
, but actually just the "index-of-summation". n
's local value in this function is represented by your i
variable.
- This then means that your
Factorial(n)
call needs to change to Factorial(i)
- The loop is also off-by-one, because the Sigma notation for the summation is inclusive of the number at the top of the Sigma, so you should have
<= fin
(or you could also have written this simply as < k
).
This is the updated Series
function:
// CHANGED: Removed n as parameter (n just the index of summation here)
public static BigRational Series(int k, int p)
{
BigRational series = new BigRational(0.0);
var fin = k - 1;
// CHANGED: Should be <= fin (i.e. <= k-1, or < k) because it's inclusive counting
for (int i = 0; i <= fin; i++)
{
var power = BigRational.Pow(p, i);
// CHANGED: was Factorial(n), should be factorial of n value in this part of the sequence being summed.
var factorialN = Factorial(i);
var sum = BigRational.Divide(power, factorialN);
series += sum;
}
return series;
}
To test the P(n)
calculation you can move that out into its own function to test (I've called it ComputeP
here):
[TestMethod]
public void TestP()
{
int n = 1;
int k = 2;
int p = 1;
// P(0) = 1 / (2 + 1/(2*(1 - 1/2))) = 1/3
// P(1) = (1/(1/2 * 2)) * P(0) = P(0) = 1/3
BigRational expected = 1;
expected /= 3;
Assert.AreEqual(expected, Program.ComputeP(k, n, p));
n = 2;
k = 2;
p = 1;
// P(2) = (1/(1*2)) * P(0) = 1/6
expected = 1;
expected /= 6;
Assert.AreEqual(expected, Program.ComputeP(k, n, p));
}
This showed up a problem with calculating P(n)
- you had a cast to double
in there which shouldn't have been present (the result is inaccurate then - you need to keep all the intermediate results in BigRational
). There's no need for the cast, so just removing it fixes this problem.
Here is the updated ComputeP
function:
public static BigRational ComputeP(int k, int n, int p)
{
// the P(n) equation
BigRational pnNumerator = BigRational.Pow(p, n);
BigRational pnDenominator = BigRational.Pow(k, (n - k)) * Factorial(k);
// the P(0) equation
//---the right side of "+" sign in Denominator
BigRational pk = BigRational.Pow(p, k);
BigRational factorialK = Factorial(k);
// CHANGED: Don't cast to double here (loses precision)
BigRational lastPart = (BigRational.Subtract(1, BigRational.Divide(p, k)));
BigRational factorialAndLastPart = BigRational.Multiply(factorialK, lastPart);
BigRational fullRightSide = BigRational.Divide(pk, factorialAndLastPart);
//---the left side of "+" sign in Denominator
BigRational series = Series(k, p);
BigRational p0Denominator = series + fullRightSide;
BigRational p0Result = BigRational.Divide(1, p0Denominator);
BigRational pNResult = BigRational.Divide((pnNumerator * p0Result), pnDenominator);
return pNResult;
}
For avoidance of confusion, here is the whole updated calculation program:
using System;
using System.Numerics;
using System.Text;
using Numerics;
public class Program
{
public static BigRational ComputeP(int k, int n, int p)
{
// the P(n) equation
BigRational pnNumerator = BigRational.Pow(p, n);
BigRational pnDenominator = BigRational.Pow(k, (n - k)) * Factorial(k);
// the P(0) equation
//---the right side of "+" sign in Denominator
BigRational pk = BigRational.Pow(p, k);
BigRational factorialK = Factorial(k);
// CHANGED: Don't cast to double here (loses precision)
BigRational lastPart = (BigRational.Subtract(1, BigRational.Divide(p, k)));
BigRational factorialAndLastPart = BigRational.Multiply(factorialK, lastPart);
BigRational fullRightSide = BigRational.Divide(pk, factorialAndLastPart);
//---the left side of "+" sign in Denominator
BigRational series = Series(k, p);
BigRational p0Denominator = series + fullRightSide;
BigRational p0Result = BigRational.Divide(1, p0Denominator);
BigRational pNResult = BigRational.Divide((pnNumerator * p0Result), pnDenominator);
return pNResult;
}
// CHANGED: Removed n as parameter (n just the index of summation here)
public static BigRational Series(int k, int p)
{
BigRational series = new BigRational(0.0);
var fin = k - 1;
// CHANGED: Should be <= fin (i.e. <= k-1, or < k) because it's inclusive counting
for (int i = 0; i <= fin; i++)
{
var power = BigRational.Pow(p, i);
// CHANGED: was Factorial(n), should be factorial of n value in this part of the sequence being summed.
var factorialN = Factorial(i);
var sum = BigRational.Divide(power, factorialN);
series += sum;
}
return series;
}
public static BigRational Factorial(int k)
{
if (k <= 1)
return 1;
else return BigRational.Multiply(k, Factorial(k - 1));
}
static void Main(string[] args)
{
var k = 40;
var n = 235;
var p = 5;
var result = ComputeP(k, n, p);
Console.WriteLine(result.ToDecimalString(1000));
Console.ReadKey();
}
}
// From https://stackoverflow.com/a/10359412/4486839
public static class BigRationalExtensions
{
public static string ToDecimalString(this BigRational r, int precision)
{
var fraction = r.GetFractionPart();
// Case where the rational number is a whole number
if (fraction.Numerator == 0 && fraction.Denominator == 1)
{
return r.GetWholePart() + ".0";
}
var adjustedNumerator = (fraction.Numerator
* BigInteger.Pow(10, precision));
var decimalPlaces = adjustedNumerator / fraction.Denominator;
// Case where precision wasn't large enough.
if (decimalPlaces == 0)
{
return "0.0";
}
// Give it the capacity for around what we should need for
// the whole part and total precision
// (this is kinda sloppy, but does the trick)
var sb = new StringBuilder(precision + r.ToString().Length);
bool noMoreTrailingZeros = false;
for (int i = precision; i > 0; i--)
{
if (!noMoreTrailingZeros)
{
if ((decimalPlaces % 10) == 0)
{
decimalPlaces = decimalPlaces / 10;
continue;
}
noMoreTrailingZeros = true;
}
// Add the right most decimal to the string
sb.Insert(0, decimalPlaces % 10);
decimalPlaces = decimalPlaces / 10;
}
// Insert the whole part and decimal
sb.Insert(0, ".");
sb.Insert(0, r.GetWholePart());
return sb.ToString();
}
}
And here is the whole unit-test program:
using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using Numerics;
[TestClass]
public class UnitTestComputation
{
[TestMethod]
public void TestFactorial()
{
Assert.AreEqual(1, Program.Factorial(0));
Assert.AreEqual(1, Program.Factorial(1));
Assert.AreEqual(2, Program.Factorial(2));
Assert.AreEqual(6, Program.Factorial(3));
Assert.AreEqual(24, Program.Factorial(4));
}
[TestMethod]
public void TestSeries()
{
int k = 1;
int p = 1;
BigRational expected = 1;
Assert.AreEqual(expected, Program.Series(k, p));
k = 2;
p = 1;
expected += 1;
Assert.AreEqual(expected, Program.Series(k, p));
k = 3;
p = 1;
expected += (BigRational)1 / (BigRational)2;
Assert.AreEqual(expected, Program.Series(k, p));
k = 1;
p = 2;
expected = 1;
Assert.AreEqual(expected, Program.Series(k, p));
k = 2;
p = 2;
expected += 2;
Assert.AreEqual(expected, Program.Series(k, p));
}
[TestMethod]
public void TestP()
{
int n = 1;
int k = 2;
int p = 1;
// P(0) = 1 / (2 + 1/(2*(1 - 1/2))) = 1/3
// P(1) = (1/(1/2 * 2)) * P(0) = P(0) = 1/3
BigRational expected = 1;
expected /= 3;
Assert.AreEqual(expected, Program.ComputeP(k, n, p));
n = 2;
k = 2;
p = 1;
// P(2) = (1/(1*2)) * P(0) = 1/6
expected = 1;
expected /= 6;
Assert.AreEqual(expected, Program.ComputeP(k, n, p));
}
}
Incidentally, the P(n)
result with the updated program for your input values for n
, p
and k
is now:
0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000593109980769066916025972569398424267669807629726200017375290861590898269902277869938365969961320969473356001666906480007119114830921839913623591124192047955091318951831902550404167336054683697071654765071519020060437129398945035521954738463786221029427589397688847246112810536958194364039693387170592425527136243952416704526069736811587380688876091926255908361275575249492845970903676492429684929779402600032481018886875698972533534890841796034626337674846620462046294537488580901129338625628349474358946962065227890599744775562637784553656488649841148591533557896418988044457914999854241038974478576578909626765823565817758792682480009619613438867365912697996527957775248350987801430141776875171808382272960426476953742528769626555642957093028553993908356226007570404005591174451216846471710162760343
NOTE: You should add to the unit-tests with more results you've checked by hand, and also check any of my working here in interpreting the algebra as code to ensure this is correct.