- Direct cost.
Since, as people said before, the following
for (String extension : assetLoader.getSupportedExtensions()) {
//stuff
}
transforms into
for (Iterator<String> it = assetLoader.getSupportedExtensions().iterator(); it.hasNext();) {
String extension = it.next();
//stuf
}
getSupportedExtensions() is called once and both of your code snippets have the same performance cost, but not the best performance possible to go through the List, because of...
- Indirect cost
Which is the cost of instantiation and utilization of new short-living object + cost of method next(). Method iterator() prepares an instance of Iterator. So, it is need to spend time to instantiate the object and then (when that object becomes unreachable) to GC it. The total indirect cost isn't so much (about 10 instructions to allocate memory for new object + a few instructions of constructor + about 5 lines of ArrayList.Itr.next() + removing of the object from Eden on minor GC), but I personally prefer indexing (or even plain arrays):
ArrayList<String> supportedExtensions = ((IAssetLoader<?>) loader).getSupportedExtensions();
for (int i = 0; i < supportedExtensions.size(); i++) {
String extension = supportedExtensions.get(i);
// stuff
}
over iterating when I have to iterate through the list frequently in the main path of my application. Some other examples of standard java code with hidden cost are some String methods (substring(), trim() etc.), NIO Selectors, boxing/unboxing of primitives to store them in Collections etc.