Ooookay - this maybe isn't very nice and straightforward code, but that's how i'd try to solve this. Please don't hurt me ;-)
First,
i'd fragment the problem in three smaller ones:
- Get rid of your multiple nested lists,
- Count the occurence of all value-pairs in the inner lists and
- Extract the most occurring value-pair from the counting results.
1.
I'd still use nested lists, but only of two-levels depth. An outer list, to iterate through, and all the two-value-lists inside of it. You can finde an awful lot of information about how to get rid of nested lists right here. As i'm just a beginner, i couldn't make much out of all that very detailed information - but if you scroll down, you'll find an example similar to mine. This is what i understand, this is how i can do.
Note that it's a recursive function. As you mentioned in comments that you think this isn't easy to understand: I think you're right. I'll try to explain it somehow:
I don't know if the nesting depth is consistent in your list. and i don't want to exctract the values themselves, as you want to work with lists. So this function loops through the outer list. For each element, it checks if it's a list. If not, nothing happens. If it is a list, it'll have a look at the first element inside of that list. It'll check again if it's a list or not.
If the first element inside the current list is another list, the function will be called again - recursive - but this time starting with the current inner list. This is repeated until the function finds a list, containing an element on the first position that is NOT a list.
In your example, it'll dig through the complete list-of-lists, until it finds your first string values. Then it gets the list containing this value - and put that in another list, the one that is returned.
Oh boy, that sounds really crazy - tell me if that clarified anything... :-D
"Yo dawg, i herd you like lists, so i put a list in a list..."
def get_inner_lists(some_list):
inner_lists = []
for item in some_list:
if hasattr(item, '__iter__') and not isinstance(item, basestring):
if hasattr(item[0], '__iter__') and not isinstance(item[0], basestring):
inner_lists.extend(get_inner_lists(item))
else:
inner_lists.append(item)
return inner_lists
Whatever - call that function and you'll find your list re-arranged a little bit:
>>> foo = [[['AA','A0'],['AB','A0']],[['AA','B0'],['AB','A0']],[['A0','00'],['00','A0'],[['00','BB'],['AB','A0'],['AA','A0']]]]
>>> print get_inner_lists(foo)
[['AA', 'A0'], ['AB', 'A0'], ['AA', 'B0'], ['AB', 'A0'], ['A0', '00'], ['00', 'A0'], ['00', 'BB'], ['AB', 'A0'], ['AA', 'A0']]
2.
Now i'd iterate through that lists and build a string with their values. This will only work with lists of two values, but as this is what you showed in your example it'll do. While iterating, i'd build up a dictionary with the strings as keys and the occurrence as values. That makes it really easy to add new values and raise the counter of existing ones:
def count_list_values(some_list):
result = {}
for item in some_list:
str = item[0]+'-'+item[1]
if not str in result.keys():
result[str] = 1
else:
result[str] += 1
return result
There you have it, all the counting is done. I don't know if it's needed, but as a side effect there are all values and all occurrences:
>>> print count_list_values(get_inner_lists(foo))
{'00-A0': 1, '00-BB': 1, 'A0-00': 1, 'AB-A0': 3, 'AA-A0': 2, 'AA-B0': 1}
3.
But you want clear results, so let's loop through that dictionary, list all keys and all values, find the maximum value - and return the corresponding key. Having built the string-of-two-values with a seperator (-
), it's easy to split it and make a list out of it, again:
def get_max_dict_value(some_dict):
all_keys = []
all_values = []
for key, val in some_dict.items():
all_keys.append(key)
all_values.append(val)
return all_keys[all_values.index(max(all_values))].split('-')
If you define this three little functions and call them combined, this is what you'll get:
>>> print get_max_dict_value(count_list_values(get_inner_lists(foo)))
['AB', 'A0']
Ta-Daa! :-)
If you really have such lists with only nine elements, and you don't need to count values that often - do it manually. By reading values and counting with fingers. It'll be so much easier ;-)
Otherwise, here you go!
Or...
...you wait until some Guru shows up and gives you a super fast, elegant one-line python command that i've never seen before, which will do the same ;-)