I'm looking to populate a new data frame column with a calculated value that is unique to each subgroup of data. Here is my exact code:
df <- read.csv('data_30_Mar2015.csv')
df$dCT <- NA
#FUNCTION
calc_dCT <- function(sample, DF){
sample_df <- DF[ which(DF$Sample=='sample'),]
print (sample_df)
VIC <- sample_df[ which(sample_df$Reporter=='VIC'),]
FAM <- sample_df[ which(sample_df$Reporter=='FAM'),]
VIC_mean<-mean(VIC[,3])
FAM_mean<-mean(FAM[,3])
DCT <- FAM_mean - VIC_mean
for (i in 1:length(sample_df)){
sample_df[i,4] <- DCT
}
DF<-merge(DF, sample_df, all=TRUE)
}
#CALLS TO FUNCTION
calc_dCT('c48', df)
calc_dCT('m48', df)
calc_dCT('c72', df)
calc_dCT('m72', df)
print (df)
and here is the output:
calc_dCT('c48', df)
[1] Sample Reporter CT dCT
<0 rows> (or 0-length row.names)
calc_dCT('m48', df)
[1] Sample Reporter CT dCT
<0 rows> (or 0-length row.names)
calc_dCT('c72', df)
[1] Sample Reporter CT dCT
<0 rows> (or 0-length row.names)
calc_dCT('m72', df)
[1] Sample Reporter CT dCT
<0 rows> (or 0-length row.names)
print (df)
Sample Reporter CT dCT
1 m48 VIC 27.50595 NA
2 m48 VIC 27.77835 NA
3 m48 VIC 27.62321 NA
4 m48 FAM 30.87295 NA
5 m48 FAM 30.87967 NA
6 m48 FAM 30.73427 NA
7 c48 VIC 26.56715 NA
8 c48 VIC 26.89787 NA
9 c48 VIC 26.82587 NA
10 c48 FAM 30.20642 NA
11 c48 FAM 30.43074 NA
12 c48 FAM 30.36933 NA
13 m72 VIC 29.61585 NA
14 m72 VIC 28.65742 NA
15 m72 VIC 29.40057 NA
16 m72 FAM 32.27304 NA
17 m72 FAM 32.38696 NA
18 m72 FAM 32.24386 NA
19 c72 VIC 28.22370 NA
20 c72 VIC 28.17342 NA
21 c72 VIC 28.49104 NA
22 c72 FAM 31.91751 NA
23 c72 FAM 31.67524 NA
24 c72 FAM 31.87287 NA
It doesn't seem to be subsetting the data correctly and I'm not sure why this would be. I'm trying to populate the column 'dCT' with the calculated value for DCT.