First, let's break it down conceptually. The predicate list_ascending_rest/3
defines a relation between a list Xs
, the left-most ascending sublist of maximum length Ys
, and the remaining items Rest
. We will use it like in the following query:
?- Xs = [1,2,3,7,2,5,8,9,3,4], list_ascending_rest(Xs,Ys,Rest).
Ys = [1,2,3,7],
Rest = [2,5,8,9,3,4] ;
false.
The straight-forward predicate definition goes like this:
:- use_module(library(clpfd)).
list_ascending_rest([],[],[]).
list_ascending_rest([A],[A],[]).
list_ascending_rest([A1,A2|As], [A1], [A2|As]) :-
A1 #>= A2.
list_ascending_rest([A1,A2|As], [A1|Bs], Cs) :-
A1 #< A2,
list_ascending_rest([A2|As], Bs,Cs).
Then, let's implement predicate list_ascendingParts/2
. This predicate repeatedly uses list_ascending_rest/3
for each part until nothing is left.
list_ascendingParts([],[]).
list_ascendingParts([A|As],[Bs|Bss]) :-
list_ascending_rest([A|As],Bs,As0),
list_ascendingParts(As0,Bss).
Example queries:
?- list_ascendingParts([1,2,3,7,2,5,8,9,3,4],Xs).
Xs = [[1,2,3,7], [2,5,8,9], [3,4]] ;
false.
?- list_ascendingParts([1,2,3,2,2,3,4,3],Xs).
Xs = [[1,2,3], [2], [2,3,4], [3]] ;
false.
Edit 2015/04/05
What if the ascending parts are known but the list is unknown? Let's find out:
?- list_ascendingParts(Ls, [[3,4,5],[4],[2,7],[5,6],[6,8],[3]]).
Ls = [3,4,5,4,2,7,5,6,6,8,3] ? ;
no
And let's not forget about the most general query using list_ascendingParts/2
:
?- assert(clpfd:full_answer).
yes
?- list_ascendingParts(Ls, Ps).
Ls = [], Ps = [] ? ;
Ls = [_A], Ps = [[_A]] ? ;
Ls = [_A,_B], Ps = [[_A],[_B]], _B#=<_A, _B in inf..sup, _A in inf..sup ? ...
Edit 2015-04-27
Room for improvement? Yes, definitely!
By using the meta-predicate splitlistIfAdj/3
one can "succeed deterministically" and "use non-determinism when required", depending on the situation.
splitlistIfAdj/3
is based on if_/3
as proposed by @false in this answer. So the predicate passed to it has to obey the same convention as (=)/3
and memberd_truth/3
.
So let's define (#>)/3
and (#>=)/3
:
#>=(X,Y,Truth) :- X #>= Y #<==> B, =(B,1,Truth).
#>( X,Y,Truth) :- X #> Y #<==> B, =(B,1,Truth).
Let's re-ask above queries, using splitlistIfAdj(#>=)
instead of list_ascendingParts
:
?- splitlistIfAdj(#>=,[1,2,3,7,2,5,8,9,3,4],Pss).
Pss = [[1,2,3,7],[2,5,8,9],[3,4]]. % succeeds deterministically
?- splitlistIfAdj(#>=,[1,2,3,2,2,3,4,3],Pss).
Pss = [[1,2,3],[2],[2,3,4],[3]]. % succeeds deterministically
?- splitlistIfAdj(#>=,Ls,[[3,4,5],[4],[2,7],[5,6],[6,8],[3]]).
Ls = [3,4,5,4,2,7,5,6,6,8,3] ; % works the other way round, too
false. % universally terminates
Last, the most general query. I wonder what the answers look like:
?- splitlistIfAdj(#>=,Ls,Pss).
Ls = Pss, Pss = [] ;
Ls = [_G28], Pss = [[_G28]] ;
Ls = [_G84,_G87], Pss = [[_G84],[_G87]], _G84#>=_G87 ;
Ls = [_G45,_G48,_G41], Pss = [[_G45],[_G48],[_G41]], _G45#>=_G48, _G48#>=_G41
% and so on...