My objective is to iterate through all combinations of a given amount of 1's and 0's. Say, if I am given the number 5, what would be a sufficiently fast way to list
1110100100, 1011000101, etc. (Each different combination of 5 1's and 5 0's)
I am attempting to avoid iterating through all possible permutations and checking if 5 1's exist as 2^n is much greater than (n choose n/2). Thanks.
UPDATE
The answer can be calculated efficiently (recurses 10 deep) with:
// call combo() to have calculate(b) called with every valid bitset combo exactly once
combo(int index = 0, int numones = 0) {
static bitset<10> b;
if( index == 10 ) {
calculate(b); // can't have too many zeroes or ones, it so must be 5 zero and 5 one
} else {
if( 10 - numones < 5 ) { // ignore paths with too many zeroes
b[index] = 0;
combo(b, index+1, numones);
}
if( numones < 5 ) { // ignore paths with too many ones
b[index] = 1;
combo(b, index+1, numones++);
}
}
}
(Above code is not tested)